Fluids, Materials and Microgravity:
Numerical Techniques and Insights into Physics
Fluids, Materials and Microgravity:
Numerical Techniques and Insights into Physics

Marcello Lappa
Napoli, Italy

2004
To my sons Francesco Romano and Arianna,
To my wife Maria Lucia, to my Parents
and to the memory of Natale Lappa
Gravity dominates everything on Earth, from the way life has developed to the way materials interact. But aboard a spacecraft orbiting the Earth, the effects of gravity are barely felt. In this “microgravity environment”, scientists can conduct experiments that are all but impossible to perform on Earth. In this virtual absence of gravity as we know it, space flight gives scientists a unique opportunity to study the states of matter (solids, liquids and gases), and the forces and processes that affect them.

In practice, microgravity or near-weightlessness corresponds to a free-fall situation and in this condition various phenomena are significantly altered, in particular convection, buoyancy, hydrostatic pressure and sedimentation. When microgravity conditions are attained, fluids do “incredible” things.

Scientific disciplines affected include fluid physics and transport phenomena, combustion, crystal growth and solidification, biological processes and biotechnology.

Microgravity is instrumental in unraveling processes that are interwoven or overshadowed in normal gravity. It can therefore be regarded as an important tool for improving models of complex phenomena and hence manufacturing processes on Earth. Critical knowledge gained from microgravity experiments, in fact, is validating new, more complex models, accelerating the current trend towards predictable and reproducible phenomena, and enabling the development of new industrial processes (i.e. a commercial return from space research activities based on the application on the ground of the knowledge obtained in space).

Within this context the present book develops working engineering models that can be easily employed in applications, while providing a rigorous mathematical and numerical framework for deeper understanding and effective treatment of phenomena encountered in microgravity and/or unmasked by this environment.

Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to focus on the most significant aspects of the given situation. Numerical simulation is the art of solving these equations. In this book, a comprehensive study of fundamental concepts and simulation methods is presented. Partial differential equations are used as the basis for the methods. However, the analysis is not limited to these aspects. A number of prototype applications, in fact, is presented.
This means that the reader is taken beyond the theoretical to demonstrate how multiphase flow equations can be solved to provide applied, practical, predictive solutions to a variety of technological problems both on Earth and in space. Along these lines, a significant effort is provided throughout the volume to show how the prototype numerical examples fit the corresponding experimental processes. The consistency of numerical predictions with experimental data suggests, in fact, that rate-controlling steps are taken into account, that simplifications do not distort actual behavior and finally provides validation for the theoretical models and techniques.

It is also worthwhile to stress how the proposed simulations, exhibiting significant capabilities to predict and elucidate experimental observations, in turn lead to identify cause-and-effect relationships, i.e. they are propaedeutical to discerning heretofore unknown physical mechanisms. Thus the book can also be regarded as an additional step in the evolutionary progress towards the full understanding of the “physics of microgravity” and related processes.

New material is included along with a compilation of published material. The text gains information from fifty of the author’s relevant and recent papers to illustrate the philosophy of modeling, the practical applications and the insights into the physics. It is conceived in order to be a useful reference guide for other specialists in these disciplines as well as an advanced level text for students taking part in courses on CFD (computational fluid dynamics), or on numerical methods for materials engineering and similar techniques. It is directed at readers already engaged or starting to be engaged in these topics. Engineers, designers and students will find the necessary numerical techniques and the revealing insights into the behavior of many phenomena usually overlooked and/or obscured by gravity (including historical developments and very recent contributions). Often a deductive approach is followed with systems of growing complexity being treated as the book progresses.

Numerical methods are important since they are a decisive tool to reduce the number of expensive space experiments. They are propaedeutical to plan and improve the experimental setups and to optimize the new production techniques suggested by the amount of knowledge obtained in space.

Superimposed on this is the fact that most of the scientists carrying out research on Earth (as well as the undergraduate and the Ph.D. students) cannot directly access microgravity platforms. For this reason the use of numerical computations is of paramount importance (often it is the only way) for the investigation of the properties of materials and fluids in the zero-g (simulated) environment, for the understanding of forces and processes affecting them (hidden or undervalued in normal gravity) and finally for the design of the aforementioned new manufacturing methods to be used on Earth.

The volume provides a rich learning environment covering inorganic, organic and living (tissues) materials and therefore could be used, in principle, by different groups
Preface

of readers:

1. Professionals and students in the metallurgy and foundry field; the text, in fact, covers the latest developments in the understanding of some still poorly known phenomena controlling the properties of cast materials, and indeed the properties of final solidified alloys;

2. Researchers and scientists looking for new high-quality semiconductor crystals and related new production techniques needed to help advance progress in computer science and technology;

3. Organic chemists and materials scientists who are now coordinating their efforts in designing macromolecular crystals for a variety of physical and chemical applications; organic crystal growers will also find in this book the detailed analysis of the various effects governing the morphological evolution of the crystals.

4. Scientists, clinicians and engineers working in the new field of tissue engineering; the text offers many novel mathematical approaches including a detailed coverage of cell–tissue interactions at cellular and molecular levels; tissue surface kinetics, biochemical, and fluid-mechanical environments, etc.

The book is wide-ranging since the coverage reflects the multidisciplinary nature of space research.

Some unexpected theoretical kinships existing among the different subjects are elucidated and emphasized (for instance, those dealing with the presence of moving and/or interacting interfaces). Despite the very different genesis (inorganic, organic, biological, etc.), many problems are treated within the common framework of Volume of Fraction and Level-Set numerical methods and other similar Eulerian or Lagrangian techniques. This is an example of the fact that herein a large amount of information is transmitted from one field to the others in terms of models and numerical strategies. This philosophy is also used in the attempt to build a common source made available for the scientific community under the optimistic idea that the contacts established among the different fields will develop into an ongoing, mutually beneficial dialogue.

Napoli, 03 March 2004

Marcello Lappa
Acknowledgements

I would like to thank Professor N. Imaishi and Dr. S. Yasushi (University of Kyushu, Institute for Materials, Chemistry and Engineering, Division of Advanced Device Materials, formerly Department of Advanced Material Study, Fukuoka) for some helpful discussions about the behavior of liquid metals under microgravity, Professor T. Hibiya (Fundamental Research Laboratories, NEC Corporation and University of Tokyo) for making possible the visit to the astonishing NEC private laboratories in Japan (Tsukuba) devoted to research on semiconductors, Dr. B.C. Sim and Professor A. Zebib (Rutgers University – New Jersey) and Dr. V. Shevtsova (University of Bruxelles) and Dr. H.C. Kuhlmann (University of Bremen) for some helpful discussions about the liquid-bridge problem, Professor A.A. Chernov (Cooperative Research in Biotechnology and Materials Science, Universities Space Research Association (USRA) at NASA Marshall Space Flight Center), Dr. L. Carotenuto (Microgravity Advanced Research and Support Center – MARS, Napoli) and Dr. F. Otálora (Laboratorio de Estudios Cristalográficos, IACT, Campus Fuentenueva (Facultad de Ciencias)) for some helpful information about the kinetics of macromolecular crystals, Dr. T.G. Hammond (Tulane University Medical Center, Tulane Astrobiology Center, Center for BioEnvironmental Research), Professor A. Taber (Department of Biomedical Engineering, Washington University), and Dr. G. Vunjak-Novakovic (Harvard – Massachusetts Institute of Technology – Division of Health Sciences and Technology) for the very helpful data provided about the rotating bioreactors and the sensitivity of tissue to fluid-dynamic shear forces.

I am also indebted to Professor R. Monti (University of Naples, Italy) and Dr. Dainotti (Alenia Aerospace Industries) for the guidance provided in recent years, Dr. D. Sleeman (Elsevier Publishing Editor – Materials Science Group) for the necessary spark at the root of the book, Dr. C. Piccolo (MARS Center) for providing many experimental results and Dr. G. De Chiara (MARS Center) for preparing many figures and sketches. All the figures dealing with numerical simulations come from my own results, with the exception of Figs. 2.12 and 4.43 which were contributed by Professor Imaishi and Dr. Yasushi.

I also acknowledge the Italian Aerospace Center (CIRA), the Italian Interuniversity Center for Supercomputing (CINECA) that allowed some calculations on the Silicon Graphics Power Challenge Supercomputer and on the Cray T3E
massively parallel computer to be made and the Microgravity Advanced Research and Support Center (MARS) whose laboratories were used for conducting many of the experiments.

Finally, I must thank my sons for their patience, and my wife for the support provided with the final stages of the book revision that I carried out during summer 2004 in the pleasant atmosphere of Villanmare.
List of contents

Preface vii
Acknowledgements xi

CHAPTER 1
Space research

1.1. What is microgravity? 1
1.2. Microgravity facilities and platforms 2
 1.2.1 Drop towers and tubes 3
 1.2.2 Parabolic flights 4
 1.2.3 Sounding rockets 5
 1.2.4 Foton recoverable capsule 8
 1.2.5 The Space Shuttle 8
 1.2.6 The International Space Station 10
1.3. From basic research to industrial applications 14
1.4. Research in fluid physics under microgravity 16
 1.4.1 Dynamics and stability 17
 1.4.2 Interfacial phenomena 20
 1.4.3 Multiphase flows 21
 1.4.4 Complex fluids 21
1.5. Research in material science 22
 1.5.1 Metals and alloys 22
 1.5.2 Electronic materials 23
1.6. Basic questions in life sciences and organic materials 29
 1.6.1 Protein crystallization 29
 1.6.2 Tissue engineering 31
1.7. Numerical simulation as a useful tool to reduce the expensive experiments in space 32

CHAPTER 2
Fundamental concepts, mathematical models and scaling analysis for the microgravity environment

2.1. Products and thermo-fluid-dynamic disturbances 39
2.2. Buoyancy convection and the Boussinesq model 41
 2.2.1 Thermogravitational convection 42
 2.2.2 Solutogravitational convection 43
 2.2.3 The distortions 44
 2.2.4 Historical developments and recent contributions 44
2.3. Some aspects of Marangoni flow 50
 2.3.1 The genesis and relevant nondimensional numbers 51
 2.3.2 Microzone facilities and microscale experimentation 54
 2.3.3 Past history and current status 55
2.4. Structure of buoyancy and Marangoni convection and of mixed flows 64
 2.4.1 The open cavity 66
 2.4.2 The liquid bridge 74
2.5. Acceleration disturbances on the International Space Station 82
2.6. Oscillatory acceleration disturbances: g-jitters 83
 2.6.1 Equations and relevant parameters 83
 2.6.2 Fields decomposition 86
 2.6.3 The TFD disturbances 87
 2.6.4 High frequencies and the thermovibrational theory 89
 2.6.5 Primary and secondary patterns of symmetry 90
 2.6.6 Extension to ranges of medium and low frequencies 93
2.7. Mixed buoyant/thermovibrational flows 100
2.8. Solution methods for the incompressible Navier–Stokes equations 104
 2.8.1 Vorticity methods 104
 2.8.2 Primitive variables methods 105
 2.8.3 Numerical treatment of boundary layers 110
 2.8.4 Viscous singularities and regularization functions 113

CHAPTER 3
Dispersed droplets and metal alloys

3.1. Introduction 119
3.2. Coalescence and wetting prevention by Marangoni effect 121
3.3. A fluid dynamic model of coalescence prevention 125
 3.3.1 Droplet warmer than the liquid pool 131
 3.3.2 Reverse conditions 134
3.4. Free droplets in liquid matrices: typical phenomena 136
 3.4.1 Solidification and drop pushing by Marangoni effect 140
 3.4.2 Droplet sedimentation 142
 3.4.3 Marangoni migration 143
 3.4.4 Droplet interaction and coalescence 144
3.5. VOF – Volume of Fluid Method and moving drops 148
 3.5.1 The variable material properties approach 148
 3.5.2 The continuum surface force and stress models 150
CHAPTER 4

Growth of semiconductors: the floating zone technique

4.1. Scientific rationale
4.2. Phase-change modeling theory: the enthalpy method
4.3. Modeling the floating zone: the half-zone and the full-zone
 4.3.1 The geometrical configurations
 4.3.2 The Young–Laplace equation
 4.3.3 Body-fitted curvilinear coordinates
4.4. Numerical simulations and parallel strategy
 4.4.1 Domain decomposition and data mapping
 4.4.2 Interprocessor communication and synchronization
 4.4.3 The elliptic equation and the multisplitting technique
 4.4.4 Program organization
 4.4.5 Parallel performances
4.5. Numerical simulations and theory of bifurcation
4.6. The half-zone: historical perspective
4.7. Structure of the 3D steady flow
4.8. Effect of geometrical parameters
4.9. Gravity effects and heating direction
4.10. A generalized theory for the azimuthal wave number
4.11. 3D analysis of crystal/melt interface shape in the half-zone
 4.11.1 Half-zone basic assumptions
 4.11.2 Initial and boundary conditions for the solidification process
 4.11.3 Definition of the phase-change zone thickness
 4.11.4 Azimuthal structure evolution
 4.11.5 Some insights into the physics
4.12. High Prandtl number liquids
 4.12.1 Transparent liquids and oscillatory behaviors
 4.12.2 Standing waves and traveling waves
4.12.3 Symmetric and asymmetric oscillatory modes of convection 273
4.12.4 System dynamical evolution 276
4.12.5 The hydrothermal mechanism 284
4.13. The full-zone: state-of-the-art 287
4.14. The full-zone: modeling and definitions 290
 4.14.1 Basic assumptions 290
 4.14.2 The ring heater 290
 4.14.3 Definition of the critical Marangoni number 294
4.15. Cylindrical interface and microgravity conditions 297
 4.15.1 Effect of the aspect ratio and description of the spatial organization 297
 4.15.2 Comparison with the half-zone 302
 4.15.3 The symmetry of the disturbances 307
4.16. Concave and convex volumes in microgravity 311
 4.16.1 Basic state and instability threshold 311
 4.16.2 Structure of the 3D flow 315
 4.16.3 Comparison with the half-zone 319
4.17. The laterally heated column on the ground 323
 4.17.1 Basic state and instability threshold 323
 4.17.2 3D patterns of symmetry 325
 4.17.3 Comparison with the half-zone 327
 4.17.4 The buoyancy effect 331
4.18. Physical explanations 332
4.19. Control of Marangoni convection 334
 4.19.1 Suppression of hydrothermal waves 334
 4.19.2 Magnetic fields 335
4.20. Mixed Marangoni/thermovibrational convection 341

CHAPTER 5
Macromolecular crystal growth: surface kinetics and morphological studies

5.1. Introduction 345
5.2. Surface-attachment kinetics and convective effects 346
5.3. Morphological studies 347
5.4. Differences between organic and inorganic crystal growth 349
5.5. Moving-boundary approach 352
5.6. OCGVOF – Organic Crystal Growth Volume of Fraction Method 353
 5.6.1 General properties 353
 5.6.2 Mathematical formulation of the surface-attachment kinetics 354
 5.6.3 Governing field equations 356
 5.6.4 Phase-field equation 358
 5.6.5 Discretization 360
5.7. Comparison with other methods 363
5.8. The OCGLSET – Organic Crystal Growth Level-Set Method 365
 5.8.1 General properties 365
 5.8.2 Solution procedure 367
 5.8.3 Discussion and comparison with the OCGVOF method 368
5.9. Prototype applications and physical aspects 369
5.10. Growth-habit simulation and microscopic facet-morphology study 371
5.11. Seeds for morphological studies and space experiments 375
5.12. Convective transport under microgravity and shape instabilities 376
 5.12.1 Growth under diffusive conditions 377
 5.12.2 Residual gravity-orientation-dependent growth 380
 5.12.3 Relative importance of mass transport and surface kinetics 386
5.13. Two interacting crystals 387
 5.13.1 Mutual interference under diffusive-transport regime 387
 5.13.2 Crystal interaction in the presence of convection 389
5.14. N interacting crystals 396
 5.14.1 Structure of the convective field 397
 5.14.2 Growth-rate distribution and morphological instabilities 404
5.15. Conclusions, possible improvements and extension to the case $N \gg 1$ 408

CHAPTER 6
Macromolecular crystal growth at macroscopic length scales

6.1. Introduction 409
6.2. The use of gel as a substitute for microgravity and true microgravity conditions 411
6.3. Macroscopic analysis and integral formulation of the kinetic conditions 412
6.4. Nucleation models 414
6.5. Moving crystals – the OCSVVOF (Organic Crystal Sedimentation Volume of Fraction) method 416
6.6. A mathematical model for sedimentation 417
6.7. Sedimentation–convection model 418
6.8. Examples and insights into the physics: the counterdiffusion technique 420
6.9. Protein precipitation in gel
 6.9.1 Periodic precipitation and underlying mechanisms 422
 6.9.2 Spatial distribution of the crystals 426
 6.9.3 Temporal analysis: propagation of the nucleation and local growth laws 427
6.10. Numerical simulation as a useful tool to estimate the nucleation threshold 434
CHAPTER 7
The growth of biological tissues

7.1. Tissue engineering and microgravity 453
7.2. The rotating vessel: how it “simulates” microgravity conditions 455
7.3. Scaffolds, microcarriers, and terminal velocity 458
7.4. OTGVOF – The Organic Tissue Growth Volume of Fraction Method 460
 7.4.1 A general formulation of the surface kinetics 461
 7.4.2 Governing field equations 463
 7.4.3 Phase-field equation 463
 7.4.4 Discretization 465
7.5. The OTGLSET – Organic Tissue Growth Level-Set Method 467
7.6. Mathematical formulation of the kinetics of cartilage tissue 468
7.7. A prototype application 470
7.8. The controversial effect of the fluid-dynamic shear stress 479
7.9. Comparison with macromolecular crystal growth 480
 7.9.1 Analogies and similarities 480
 7.9.2 Differences 483

References 485
Index 509