Semi-Analytical Solution for the Optimal Low-Thrust Deflection of Near Earth Objects

Camilla Colombo*, Massimiliano Vasile† and Gianmarco Radice‡
University of Glasgow, Glasgow, G12 8QQ, United Kingdom

This paper presents a semi-analytical solution of the asteroid deviation problem when a low-thrust action, inversely proportional to the square of the distance from the Sun, is applied to the asteroid. The displacement of the asteroid at the minimum orbit interception distance from the Earth’s orbit is computed through proximal motion equations as a function of the variation of the orbital elements. A set of semi-analytical formulae is then derived to compute the variation of the elements: Gauss planetary equations are averaged over one orbital revolution to give the secular variation of the elements, and their periodic components are approximated through a trigonometric expansion. Two formulations of the semi-analytical formulae, latitude and time formulation, are presented along with their accuracy against a full numerical integration of Gauss equations. It is shown that the semi-analytical approach provides a significant saving in computational time while maintaining a good accuracy. Finally, some examples of deviation missions are presented, as an application of the proposed semi-analytical theory. In particular, the semi-analytical formulae are used, in conjunction with a multi-objective optimization algorithm to find the set of Pareto optimal mission options that minimizes the asteroid warning time and the spacecraft mass while maximizing the orbital deviation.

Nomenclature

* Ph.D. Candidate, Department of Aerospace Engineering, James Watt (South Building), camilla.colombo@strath.ac.uk, Student Member AIAA.
† Senior Lecturer Ph.D., Department of Aerospace Engineering, James Watt (South Building), m.vasile@aero.gla.ac.uk, Member AIAA.
‡ Senior Lecturer Ph.D., Department of Aerospace Engineering, James Watt (South Building), g.radice@aero.gla.ac.uk, Member AIAA.
\(m_0 \) = mass into space, kg
\(n \) = angular velocity, \(\text{s}^{-1} \)
\(p \) = semilatus rectum, km
\(r \) = orbital radius, km
\(T \) = transition matrix
\(T_{\text{NEO}} \) = asteroid nominal orbital period, s or days
\(t \) = time, s or MJD since 2000
\(t_d \) = departure time from the Earth, s or MJD since 2000
\(t_e \) = time when the low-thrust arc ends, s or MJD since 2000
\(t_i \) = interception time, s or MJD since 2000
\(t_{\text{MOID}} \) = time at the minimum orbit interception distance point, s or MJD since 2000
\(t_w \) = warning time, s or MJD since 2000
\(v \) = velocity vector, \(\text{km/s} \)
\(v_o \) = orbital velocity, \(\text{km/s} \)
\(\alpha \) = vector of the orbital parameters
\(\Delta r \) = vector distance of the asteroid from Earth at the minimum orbit interception distance, km
\(\delta r \) = deviation vector in the Hill coordinate frame, km
\(\delta s \) = component of the deviation vector, km
\(\delta v \) = impulsive maneuver vector, \(\text{km/s} \)
\(\delta \alpha \) = orbital element difference between the perturbed and the nominal orbit
\(\theta \) = true anomaly, deg
\(\theta^* \) = argument of the latitude, deg
\(\mu \) = Sun gravitational constant, \(\text{km}^3/\text{s}^2 \)
\(\Omega \) = argument of the ascending node, deg
\(\omega \) = argument of the perigee, deg

Subscripts

(\(h \)) = direction of the angular momentum
(\(n \)) = normal direction in the orbital plane
(\(t \)) = tangential direction in the orbital plane

I. Introduction

NEAR Earth Object (NEO) interception and hazard mitigation has been recognized as a key issue for the safety of life on Earth. The threat posed by asteroid Apophis, with the uncertainties on its orbit after the close encounter with Earth in 2029, has highlighted the importance of space missions aiming at studying NEOs. In particular, tracking the position and velocity of the asteroid and characterizing its shape and composition have become of primary importance in view of any future deviation strategy. Furthermore, testing the technology required to deflect an asteroid is now the primary objective of missions such as Don Quijote.

The effect of a number of deviation strategies proposed in the past can be modeled as an impulsive variation of the velocity of the asteroid (e.g. kinetic impactor, nuclear explosion). Other strategies, instead, would result into a low thrust applied to the asteroid with a continuous momentum change (e.g. solar collector, pulsed laser, mass driver, gravity tractor, enhanced Yarkovsky effect).

The consequent variation of the orbit of the asteroid can be computed through a numerical procedure and the result has to be validated through orbit tracking and astronomical observations. Carusi et al. studied the \(\delta v \) requirement for deflecting a hazardous near Earth object at different epochs. The orbital course of the asteroid following a deflection impulse along its velocity is computed through the numerical propagation of the full n-body dynamics. They show that, when an encounter occurs before the impact epoch, the required deflection maneuver is noticeably lower than after the encounter itself. Kahle et al. extended this study by removing the assumption of a maneuver along-track; they showed that using a different direction for the deflection maneuver in the vicinity of a planetary encounter increases significantly the performance. The issue with numerical approaches is the
This paper proposes a semi-analytical approach to compute the displacement of the position of an asteroid at the MOID point, after a low-thrust deviation maneuver, and a shape based approach for the transfer trajectory. The integrals, which are valid for all initial eccentricity from slightly above zero, to describe the secular evolution of the orbit of a spacecraft, subject to different thrust control laws. The rate of overview of the approximated solutions derived so far. In his work, Petropoulos developed some analytical integrals circular or nearly circular. the ratio between the thrust and the gravity acceleration is kept constant. In both cases, the orbit is assumed to be tangential continuous thrust acceleration. Following a similar formulation, Boltz proposed a solution in the case of an impulsive deflection maneuver. Furthermore, the effect of the deviation strategy is translated in a change of mean motion and hence in a phase shift; other changes in the orbital geometry are not included. A more general approach was used by Conway to determine the near-optimal direction in which an impulsive maneuver should be given. The modified orbital course was propagated analytically forward in time by means of Lagrange coefficients expressed through universal formulae. An analysis on the minimum \(\delta v \) and the optimal impulse angle was performed also by Park and Ross, who used Lagrange coefficients to propagate the deviated orbit of the asteroid rather than only its displacement with respect to the nominal course. They also included the effects of the Earth gravity. Song et al. investigated the deflection of asteroids and comets using a power-limited laser beam. They used the same technique proposed by Park and Ross to solve the heliocentric two-body motion after the laser is shut off, whereas when the laser is on, the trajectory of the Earth crossing object is numerically integrated. They found that the optimal operating angle, between the asteroid velocity and the thrust acceleration vector remains in the range \([150, 180]\) degrees for warning times longer than one asteroid period, regardless of the orbital elements of the asteroid.

In this paper, the attention is focused on deviation techniques that make use of a continuous low thrust action. In particular, we perform an extensive search for all mission opportunities, over a wide range of launch dates that are Pareto optimal with respect to three criteria: the achievable displacement of the asteroid at the point of Minimum Orbit Interception Distance (MOID), the time between the launch and the hypothetical impact and the propellant mass for the transfer trajectory. Reconstructing the set of all Pareto optimal solutions requires the evaluation of several tens of thousands of trajectories, thus the numerical computation of the transfer trajectory of the spacecraft and of the deflected trajectory of the asteroid would be impractical.

Since 1950 several authors have proposed analytical solutions to some particular cases of the low-thrust problem. Tsien and Benney developed a solution for escape trajectories, respectively subject to radial and tangential continuous thrust acceleration. Following a similar formulation, Boltz proposed a solution in the case the ratio between the thrust and the gravity acceleration is kept constant. In both cases, the orbit is assumed to be circular or nearly circular.

Kechichian used an averaging technique to compute analytical solutions for orbits raising with constant tangential acceleration in the presence of Earth shadow. Kechichian’s equations, which contain some terms expanded in power of the eccentricity, are accurate for small to moderate values of the eccentricity, up to 0.2. The effects of the Earth oblateness are also considered. Gao and Kleeve adopted an averaging technique with respect to the eccentric anomaly, for continuous tangential thrust trajectories, also accounting for the Earth oblateness and the Earth shadow. The value of the elliptic integrals in the solution of Gao and Kleeve is approximated and the accuracy of the solution depends on the eccentricity.

Other analytical solutions for low-thrust trajectories were studied by Petropoulos who presented a general overview of the approximated solutions derived so far. In his work, Petropoulos developed some analytical integrals to describe the secular evolution of the orbit of a spacecraft, subject to different thrust control laws. The rate of change of the orbital energy and the eccentricity are time-averaged and reformulated introducing some elliptic integrals, which are valid for all initial eccentricity from slightly above zero.

This paper proposes a semi-analytical approach to compute the displacement of the position of an asteroid at the MOID point, after a low-thrust deviation maneuver, and a shape based approach for the transfer trajectory. The miss distance achieved with a given deviation action is computed analytically by means of the proximal motion equations expressed as a function of the orbital elements. The variation of the orbital parameters is then computed through Gauss’ planetary equations. Note that the computation of the miss distance through proximal motion equations can be adopted for any deviation strategy and represents an extension and a generalization of the methodologies proposed in previous works in which analytical formulae were derived to compute the deviation due to a variation in the orbital mean motion.
The assumption for the analytical developments in this paper is that the deflection strategy uses the Sun as a power source and therefore the thrust acceleration is inversely proportional to the square of the distance from the Sun. Furthermore, we focus our attention on the case in which the thrust is aligned with the tangent to the osculating orbit of the asteroid.

In order to obtain an analytical solution for the variation of the orbital elements, Gauss’ equations are averaged over one orbital revolution. However, the required accuracy for the computation of the miss distance is higher than for the design of a generic low-thrust trajectory, hence, unlike other works, also the periodic variation of the orbital elements is taken into account. In addition, the analytic integrals are updated with a one-period step to further improve the accuracy. The general applicability of the proposed formulation and their accuracy is demonstrated through a number of test cases. Furthermore, some analyses are presented on the sensitivity of the deviation to the in-plane orbital elements of the nominal orbit of the asteroid. Finally, families of Pareto optimal solutions, for different asteroids will be presented.

II. Asteroid Deviation Problem

Given the time of interception t_i of a generic NEO, the objective is to maximize the minimum orbit interception distance from the Earth, by applying a low-thrust deviation action, which consists in a continuous push on the asteroids centre of mass over a certain interval of time. In general, any deviation strategy generates a perturbation of the nominal orbit of the asteroid. The new orbit can be considered proximal to the unperturbed one (see Fig. 1).

Fig. 1 Low thrust deviation maneuver.

If θ is the true anomaly of the NEO at the MOID along the unperturbed orbit and $\theta' = \omega + \phi$ the corresponding latitude, we can write the variation of the position of the NEO, after deviation, with respect to its unperturbed position by using the proximal motion equations:

$$
\delta s_r = \frac{r}{a} \delta a + \frac{a e \sin \theta}{\eta} \delta M - a \cos \theta \delta e
$$

$$
\delta s_\phi = \frac{r}{\eta} \left(1 + e \cos \theta\right) \frac{1}{2} \delta M + r \delta \omega + \frac{r \sin \theta}{\eta} \left(2 + e \cos \theta\right) \delta e + r \cos \phi \delta \Omega
$$

$$
\delta s_i = r \left(\sin \theta' \delta i - \cos \theta' \sin i \delta \Omega\right)
$$

where δs_r, δs_ϕ and δs_i are the displacements in the radial, transversal and perpendicular to the orbit plane directions respectively, so that the deviation is $\delta r = [\delta s_r \quad \delta s_\phi \quad \delta s_i]^T$, and $\eta = \sqrt{1-e^2}$. In a matrix form:

$$
\delta r(t_{MOID}) = A_{MOID} \delta a
$$

$\delta a = [\delta a \quad \delta e \quad \delta i \quad \delta \Omega \quad \delta \omega \quad \delta M]^T$ is the vector of the orbit element difference at the MOID between the perturbed and the nominal orbit, where M is the mean anomaly. When a low thrust deviation action is applied over
the interval \([t_i, t_f]\), being \(t_s \leq t_{\text{MOID}}\), the time when the maneuver is ended, the total variation of the orbital parameters can be computed by integrating Gauss’ planetary equations 24:

\[
\begin{align*}
\frac{da}{dt} &= \frac{2a^2 \nu}{\mu} a_s \\
\frac{de}{dt} &= \frac{1}{\nu} \left[2(e + \cos \theta) a_i - \frac{r}{a} \sin \theta a_s \right] \\
\frac{di}{dt} &= \frac{r \cos \theta'}{h} a_k \\
\frac{d\Omega}{dt} &= \frac{r \sin \theta'}{h \sin i} a_s \\
\frac{d\omega}{dt} &= \frac{1}{ev} \left[2 \sin \theta a_i + \left(\frac{2e + \frac{r}{a} \cos \theta}{a} \right) a_s \right] - \frac{r \sin \theta' \cos i}{h \sin i} a_h \\
\frac{dM}{dt} &= n - \frac{b}{eav} \left[2 \left(1 + \frac{e^2 r}{p} \right) \sin \theta a_i + \frac{e \cos \theta a_s}{a} \right]
\end{align*}
\]

(3)

The low thrust strategy provides an acceleration \(\mathbf{a}(t) = [a_i \ a_s \ a_h]^{T}\), here expressed in a tangential-normal-binormal reference frame, such that \(a_i\) and \(a_s\) are the components of the acceleration in the plane of the osculation orbit respectively, along the velocity vector and perpendicular to it, and \(a_h\) is the component perpendicular to the orbital plane. Note that the derivative of \(M\), in the \(6^{th}\) equation of system (3), takes into account the instantaneous change of the orbit geometry at each instant of time \(t \in [t_i, t_f]\) and the variation of the mean motion due to the change in the semi-major axis along the thrust arc.

Letting \(\mathbf{a}(t) = [a_e \ e \ i \ \Omega \ \omega \ M]^{T}\) to be the vector of the orbital parameters, we define:

\[
\Delta \mathbf{a} = \mathbf{a}(t_f) - \mathbf{a}(t_i) = [\Delta a \ \Delta e \ \Delta i \ \Delta \Omega \ \Delta \omega \ \Delta M]^{T}
\]

the finite variation of the orbital elements with respect to the nominal orbit, in the interval \([t_i, t_f]\), obtained from the numerical integration of Eqs. (3). It is important to point out that \(\delta M\) in Eqs. (1) must include the phase shift between the Earth and the asteroid. Therefore, since the mean anomalies at the MOID on the perturbed \(\dot{M}_{\text{MOID}}\) and on the nominal orbits \(M_{\text{MOID}}\) are computed as:

\[
\begin{align*}
\dot{M}_{\text{MOID}} &= M(t_i) + n_e (t_{\text{MOID}} - t_i) = M(t_i) + \Delta M + n_e (t_{\text{MOID}} - t_i) = n_e (t_i - t_p) + \Delta M + n_e (t_{\text{MOID}} - t_i) \\
M_{\text{MOID}} &= n_i (t_{\text{MOID}} - t_p)
\end{align*}
\]

where \(t_p\) is the passage at the pericenter, then the total variation in the mean anomaly between the proximal and the unperturbed orbit is:

\[
\delta M = \dot{M}_{\text{MOID}} - M_{\text{MOID}} = (n_e - n_i) t_{\text{MOID}} + n_i t_i - n_i t_p + \Delta M
\]

(4)

where \(n_i\) is the nominal angular velocity and

\[
n_i = \sqrt{\frac{\mu}{(a + \Delta a)^3}}.
\]
The variation of the other orbital parameters in Eqs. (1), instead, is simply
\[\delta a = \Delta a, \quad \delta e = \Delta e, \quad \delta i = \Delta i, \quad \delta \Omega = \Delta \Omega, \quad \delta \omega = \Delta \omega. \]

If \(\Delta r = [\Delta s, \quad \Delta s_\theta, \quad \Delta s_\phi] \) is the vector distance of the asteroid from the Earth at the MOID and \(\delta r = [\delta s, \quad \delta s_\theta, \quad \delta s_\phi] \) is the variation given by Eqs. (1) at \(t_{\text{MOID}} \), then the objective function for the maximum deviation problem is:

\[\| \Delta r + \delta r \| = \sqrt{ (\Delta s + \delta s)^2 + (\Delta s_\theta + \delta s_\theta)^2 + (\Delta s_\phi + \delta s_\phi)^2 } \] (5)

The proximal motion equations provide a very simple and general means to compute the variation of the MOID with good accuracy, without the need for further analytical developments. Compared with methods that are analytically propagating the perturbed trajectory using Lagrange coefficients, the proposed approach does not require any solution of the time equation for every variation of the orbit of the asteroid and is therefore less computationally expensive. On the other hand, it is conceptually and computationally equivalent to those approaches that are analytically propagating only the variation of position and velocity of the asteroid by using the fundamental perturbation matrix. Conversely, the benefit of using proximal motion equations expressed in orbital elements is the explicit relationship between the components of the perturbation action and the geometric characteristics of the orbit of the asteroid.

Gauss’ equations (3), together with Eq. (4), provide a way to compute the variation of the orbital elements between the nominal and the deviated orbit. The equations account both for the geometrical variation of the orbit and the secular change in the mean motion. In order to compute the effect of any low thrust deflection strategy, Gauss’ equations would have to be numerically integrated. However, in section III of this paper we will restrict our attention to the case of a tangential push with modulus inversely proportional to the square of the distance from the Sun. Note that, if we integrated only the first term of the last of Eqs. (3), neglecting the variations of \(e, \quad i, \quad \omega \), and \(\Omega \), and we inserted it into Eq. (4) we would get:

\[\delta M = (n_\epsilon - n_i) t_{\text{MOID}} + n_i t_i - n_t s + \int_{i_\epsilon}^{i_i} n \, dt \] (6)

which is the secular change in the mean motion, already considered by other authors. The equivalence of Eq. (6) to what already in the literature can be demonstrated as follows. Let us start by re-writing Eq. (6) as:

\[\delta M = \left[n(t_{\text{MOID}} - t) \right]_{i_\epsilon}^{i_i} + \int_{i_\epsilon}^{i_i} n \, dt \]

and integrating by part:

\[\delta M = \int_{i_\epsilon}^{i_i} (t_{\text{MOID}} - t) \frac{dn}{dt} \, dt \] (7)

Now, the differential \(dn \) can be written as a function of \(da \), and through the first of Gauss’ equations (3) as a function of the time shift \(dt \):

\[dn = \sqrt{\mu} \left[\frac{3}{2} \right] a^{-\frac{3}{2}} da \]

\[da = \frac{2a^2 \, v}{\mu} a_i \, dt \]

Hence, Eq. (7) becomes:

\[\delta M = -\frac{3}{\sqrt{\mu}} \int_{i_\epsilon}^{i_i} (t_{\text{MOID}} - t) \frac{v}{\sqrt{a}} a_i \, dt \]
If now we use the superscript \(\hat{\cdot} \) to denote the time coordinates measured from the interception time \(t \), and we take the mean value of the semi-major axis out of the integral, we get:

\[
\delta M = -\frac{3}{\sqrt{a \mu}} \int_0^t (\hat{\text{MOID}} - \hat{\cdot}) \langle \mathbf{v}, \mathbf{a}(\hat{\cdot}) \rangle \, d\hat{t}
\]

which then can be translated \(\delta M \) to the variation of the time to encounter induced by the strategy deflection action \(\mathbf{a} \), projected onto the velocity of the asteroid \(\mathbf{v} \):

\[
\delta t = -\frac{a}{\mu} \int_0^t (\hat{\text{MOID}} - \hat{\cdot}) \langle \mathbf{v}, \mathbf{a}(\hat{\cdot}) \rangle \, d\hat{t}
\]

A. Analysis of the Optimal Thrust Direction

An estimation of the optimal direction \(\hat{\mathbf{v}} \) of the push can be obtained by maximizing the deviation \(\|\delta \mathbf{r}\| \) at the MOID, given the time-to-impact \(\Delta t = (\text{MOID} - t) \). The deviation vector can be computed as:

\[
\delta \mathbf{r}(\text{MOID}) = \mathbf{A}_{\text{MOID}} \mathbf{G} \delta \mathbf{v}(t) = \mathbf{T} \delta \mathbf{v}(t)
\]

where \(\mathbf{T} \) is the transition matrix that links the impulsive \(\delta \mathbf{v} \) at time \(t \) to the consequent deviation at \(\text{MOID} \). \(\mathbf{A}_{\text{MOID}} \) is the matrix in (2) and \(\mathbf{G} \) is the matrix associated to the Gauss’ equations written for finite differences, i.e. the control acceleration being replaced by an instantaneous change in the asteroid velocity vector:

\[
\delta \mathbf{a} = \mathbf{G} \delta \mathbf{v}(t)
\]

Following Conway’s \(^8\) approach, \(\|\delta \mathbf{r}\| \) can be maximized by choosing an impulse vector \(\delta \mathbf{v}_{\text{opt}} \) parallel to the eigenvector of \(\mathbf{T} \) conjugate to the maximum eigenvalue. As a result of this analysis, we can derive that for a \(\Delta t \) larger than a specific \(\Delta t_{\text{MOID}} \), the optimal impulse presents a dominant component along the tangent direction, being this one associated to the shifting in time between the position of the asteroid and the Earth, rather than to a geometrical variation of the MOID. This conclusion is in agreement with the preliminary analysis on the \(\delta \mathbf{v} \) direction performed by Ahrens and Harris \(^5\) the numerical verification by Park and Ross \(^9\) and the mathematical demonstration provided by Conway \(^8\). In the case of a low-thrust maneuver, as a first approximation, this results can be generalized by choosing the control vector at time \(t \) instantaneously tangent to the optimal impulsive \(\delta \mathbf{v}(t) \).

Hence in this work, we focus on low-thrust acceleration in the tangent direction. This is a valid assumption when we consider hazardous cases with a warning time longer than approximately \(0.75T_{\text{NEO}} \). For a better estimation of the optimal direction of thrust in the case of low-thrust propulsion, one can refer to the analysis by Song et al. \(^12\).

Note that, in general, the direction that maximizes \(\|\delta \mathbf{r}\| \) is not optimal for the maximization of \(\|\Delta \mathbf{r} + \delta \mathbf{r}\| \) defined in Eq. (5). However, in this paper we use the maximization of \(\|\delta \mathbf{r}\| \) as an approximation to the general case, since it is valid for an actual impact, i.e. MOID equal to zero.

III. Semi-Analytical Formulae for Low-thrust Deviation Actions

In this section, a set of semi-analytical formulae will be derived to calculate the total variation of the orbital parameters due to a low-thrust action. It is considered that a continuous acceleration \(\mathbf{a}_t \) is applied along the orbit track, with modulus given by:

\[
a_t = \frac{k}{r^2}
\]
where r is the distance from the Sun and k is a time-invariant proportionality constant that has to be fixed according to the specification of the power system. The selection of this acceleration law does not represent a severe restriction to the mission design, in fact Eq. (8) describes any strategy that exploits the Sun as a power source, e.g. a solar electric propulsion spacecraft that rendezvous with the NEO, anchors to its surfaces and pushes, or a solar mirror which collects the energy from the Sun and focuses it onto the asteroid surface to ablate it. Moreover, if the formulae presented in the following are adopted to design a low-thrust trajectory, Eq. (8) represent the control acceleration due to a power-limited spacecraft.

Gauss’ equations are written as a function of the true latitude θ':

$$\frac{da}{d\theta'} = \frac{da}{dt} \frac{dt}{d\theta'}$$

where, in case of zero acceleration out-of-plane a_a,

$$\frac{d\theta'}{dt} = \frac{h}{r^2} \quad (9)$$

where h is the orbital angular momentum. Under the hypothesis of planar tangential maneuver, Eqs. (3) become:

$$\frac{da}{d\theta'} = \frac{2a^2v r^2}{\mu} a,$$

$$\frac{de}{d\theta'} = \frac{1}{v} \left(e + \cos \theta \right) \frac{r^2}{h} a,$$

$$\frac{dl}{d\theta'} = 0,$$

$$\frac{d\Omega}{d\theta'} = 0,$$

$$\frac{d\omega}{d\theta'} = \frac{1}{ev} \frac{2 \sin \theta}{h} a,$$

$$\frac{dM}{d\theta'} = \left[n - \frac{b}{e\nu} \right] \frac{2(1 + \cos e) \sin \theta a}{h} r^2$$

Eqs. (10) are averaged over one period of the true anomaly $\theta' \approx 2\pi$, yielding the average rate of change of the orbital parameters:

$$\frac{\Delta a}{d\theta'} \approx \int_{0}^{2\pi} \frac{1}{2\pi} \frac{d\alpha}{d\theta'} d\theta$$

The total variation $\Delta \alpha$ of the orbital elements over one orbital period of θ' can be approximated as:

$$\Delta \alpha \approx \int_{0}^{2\pi} \frac{1}{2\pi} \frac{d\alpha}{d\theta'} d\theta$$

if a zero variation in the anomaly of the pericenter is assumed, i.e. $d\theta' \approx d\theta$. This assumption holds true in the case the deviation is calculated over one integer number of orbital revolutions, because the periodic variation of ω is zero and the secular one is of order 10^{-11} rad for the level of acceleration used in this paper. Thus the variation of the orbital element over one revolution can be written as:
\[
\Delta\pi = 2k \int_{\theta_0}^{\theta_0+2\pi} \frac{1}{h} \left(e + \cos \theta \right) \sqrt{\frac{1 + e^2 + 2e\cos \theta}{a(1-e^2)}} d\theta
\]
\[
\Delta\sigma = 2k \int_{\theta_0}^{\theta_0+2\pi} \frac{a^2}{h} \sqrt{\frac{1 + e^2 + 2e\cos \theta}{a(1-e^2)}} d\theta
\]
\[
\Delta\tau = 0
\]
\[
\Delta\Omega = 0
\]
\[
\Delta\varpi = 2k \int_{\theta_0}^{\theta_0+2\pi} \sin \theta \sqrt{\frac{1}{\mu} \left(a(1-e^2) \right)} d\theta
\]
\[
\Delta\Omega = \int_{\theta_0}^{\theta_0+2\pi} \left(n \left(\frac{a(1-e^2)}{h(1+e\cos \theta)} \right)^2 - \frac{2bk}{eah} \sin \theta \sqrt{\frac{1}{\mu} \left(a(1-e^2) \right)} \frac{2ebh}{ae} \sin \theta \sqrt{\frac{1}{\mu} \left(a(1-e^2) \right)} \right) d\theta
\]

By considering \(a \) and \(e \) constant within one revolution, the following analytical formulae can be derived after some algebraic manipulations:

\[
\Delta\pi = \left[\frac{2k(1+e)\chi}{e\nu} \left((1+e)E \left(\frac{\theta}{2}, \frac{4e}{2(1+e)} \right) + (-1+e)F \left(\frac{\theta}{2}, \frac{4e}{2(1+e)} \right) \right) \right]_{\theta_0}^{\theta_0+2\pi}
\]
\[
\Delta\sigma = \left[\frac{2k}{e\nu} \left(\frac{2\nu E}{\chi} \frac{4e}{2(1+e)} \right) \right]_{\theta_0}^{\theta_0+2\pi}
\]
\[
\Delta\tau = 0
\]
\[
\Delta\Omega = 0
\]
\[
\Delta\varpi = \left[\frac{2k(1+e^2+2e\cos \theta)}{e\nu} \right]_{\theta_0}^{\theta_0+2\pi}
\]
\[
\Delta\Omega = \left[\frac{2 \arctan \left(\sqrt{\frac{1-e}{1+e}} \tan \left(\frac{\theta}{2} \right) \right) - e \sqrt{1-e^2} \sin \theta \right]
\]
\[
+ \left[\frac{2bk}{eah} \left(\frac{1+e^2+2e\cos \theta}{e\nu} + e \frac{2 \arctan \left(\frac{\sqrt{1+e^2+2e\cos \theta}}{1-e^2} \right)}{\nu \sqrt{1-e^2}} \right) \right]_{\theta_0}^{\theta_0+2\pi}
\]

(11)

where:

\[
\nu(\theta) = \sqrt{\frac{\mu(1+e^2+2e\cos \theta)}{a(1-e^2)}}
\]

is the orbital velocity and \(\chi \) is defined as:
\[\chi(\theta) = \sqrt{\frac{1 + e^2 + 2e \cos \theta}{(1 + e)^2}} \]

Eqs. (11) contain two elliptic integrals to be evaluated only once every orbital period:

\[F\left[\frac{\theta}{2}, \frac{4e}{(1+e)^2} \right] \quad \text{where} \quad F[\phi, \lambda] = \int_0^\phi \frac{d\phi}{\sqrt{1 - \lambda \sin^2 \phi}} \quad (12) \]

is the incomplete elliptic integral of the first kind and:

\[E\left[\frac{\theta}{2}, \frac{4e}{(1+e)^2} \right] \quad \text{where} \quad E[\phi, \lambda] = \int_0^\phi \sqrt{1 - \lambda \sin^2 \phi} \, d\phi \quad (13) \]

the incomplete elliptic integral of the second kind. Note that the integral kernels (11), to be evaluated in \(\theta_0 + 2\pi \) and \(\theta_0 \), are function only of the semi-major axis and the eccentricity.

The variation of the mean anomaly \(M \) strongly influences the consequent deviation, calculated through Eqs. (1). Hence, when the primitive function is evaluated in the upper limit \(\theta_0 + 2\pi \), the value of the eccentricity is set equal to \(e + \Delta e \), in order to have a better approximation of \(\Delta \dot{M} \) in Eqs. (11). This allows taking into account the secular variation \(\Delta \dot{e} \) over one orbital revolution. Finally, the total variation of the orbital parameters over the thrust-arc is determined by integrating Eqs. (11) with the Euler method with a step size of one orbital period.

A. Accuracy Analysis

The accuracy of Eqs. (11) was assessed by computing the relative error on the achieved deviation \(\delta r \) between the numerical propagation of Gauss’ equations and the analytical formulae:

\[e_r = \frac{\| \delta r_{\text{propagated}} - \delta r_{\text{analytical}} \|}{\delta r_{\text{propagated}}} \]

The deviation \(\delta r \) is calculated considering a push of the asteroid over the angular interval \([\theta_0, \theta_0 + j/2\pi]\), with \(j \) an integer number and by calculating the resulting displacement right at the end of the thrust arc. The vector \(\delta r_{\text{analytical}} \) is the deviation obtained by means of the analytical formulae (11), while \(\delta r_{\text{propagated}} \) was computed through the numerical integration of Gauss’s equations (10):

\[\Delta \mathbf{a} = \int_{\theta_0}^{\theta_0 + j/2\pi} \frac{d\mathbf{a}}{d\theta} \, d\theta \]

Fig. 2a represents the relative error on the computation of the deviation of Apophis, when pushing over an increasing number of orbital revolutions and starting the deviation maneuver at different angular positions. In fact the variation of the orbital parameters over one orbital revolution depends on where, along the orbit, the maneuver starts. In the legend \(t_p \) is the time at the pericenter, \(t_0 \) the time when the deviation action commences and \(T_{\text{NEO}} \) is the asteroid nominal orbital period. Fig. 2b shows the relative error for an asteroid with higher eccentricity and inclination (\(e = 0.73, i = 25^\circ \)). An adaptive step-size Runge-Kutta Fehlberg integrator was used for the numerical integration and the absolute and the relative tolerance were set to \(1 \cdot 10^{-16} \) and \(2.3 \cdot 10^{-14} \) respectively in order to obtain a relative error of the order of \(10^{-5} \). The value of \(k \) used for the following analyses is \(k = 2.2 \cdot 10^3 \, \text{km}^3/\text{s}^2 \) for asteroid Apophis (Fig. 2a) and \(k = 2 \cdot 10^4 \, \text{km}^3/\text{s}^2 \) for asteroid 1979XB (Fig. 2b). The reasons, which led to these values will be explained in section VI.
Fig. 2 Relative error on the deviation. a) Asteroid Apophis. b) Asteroid 1979XB.

Other than the accuracy, an advantage of the analytical formulation is a significant reduction in the computational cost with respect to a numerical integration through a Runge-Kutta method. In fact, the CPU time\(^\dagger\) required for the numerical propagation of Gauss' equations is one order of magnitude higher than the one required for the computation of the analytical formulae, as reported in Table 1.

Table 1 Computational time of the analytical and numerical approach.

<table>
<thead>
<tr>
<th>orbital periods</th>
<th>time analytical [s]</th>
<th>time numerical [s]</th>
<th>percentage of saving in computational time (analytical/numerical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.3e-003</td>
<td>5.6e-002</td>
<td>92.3</td>
</tr>
<tr>
<td>2</td>
<td>6.1e-003</td>
<td>7.2e-002</td>
<td>91.5</td>
</tr>
<tr>
<td>3</td>
<td>6.8e-003</td>
<td>9.9e-002</td>
<td>93.1</td>
</tr>
<tr>
<td>4</td>
<td>9.3e-003</td>
<td>1.2e-001</td>
<td>92.2</td>
</tr>
<tr>
<td>5</td>
<td>1.2e-002</td>
<td>1.4e-001</td>
<td>91.7</td>
</tr>
<tr>
<td>6</td>
<td>1.3e-002</td>
<td>1.7e-001</td>
<td>92.0</td>
</tr>
<tr>
<td>7</td>
<td>1.6e-002</td>
<td>1.9e-001</td>
<td>91.7</td>
</tr>
<tr>
<td>8</td>
<td>1.9e-002</td>
<td>2.1e-001</td>
<td>91.1</td>
</tr>
<tr>
<td>9</td>
<td>2.0e-002</td>
<td>2.3e-001</td>
<td>91.2</td>
</tr>
<tr>
<td>10</td>
<td>2.2e-002</td>
<td>2.5e-001</td>
<td>91.2</td>
</tr>
</tbody>
</table>

\(\dagger\) Time calculated with a Pentium® 4 CPU 3.00 GHz.

IV. Periodic Variation of the Orbital Parameters

The analytical formulation in Eqs. (11) describes the mean variation of the keplerian elements, hence it gives a sufficiently accurate estimate of their variation over one full revolution of the true latitude. For smaller angular intervals, the periodic component of the perturbation must be included because its variation is not zero. To this aim an expression was derived to estimate the periodic component of semi-major axis, eccentricity and argument of the perigee. The trend of \(a\), \(e\), \(\omega\) function of \(\theta\) can be approximated by the Eqs (14):

\(t_0 = t_p\)

\(t_0 = t_p + T_{NEO}/4\)

\(t_0 = t_p + T_{NEO}/2\)

\(t_0 = t_p + T_{NEO}*3/4\)
In Eqs. (14) the first two terms are the initial condition for the secular evolution at point 0 (i.e. the point when the deviation action commences), the third term indicates the secular variation obtained from Eqs. (11) and the forth one is the periodic variation. The coefficients C_a, C_e and C_ω are the amplitudes of the periodic variation. Their value was set through a calibration process: Gauss’ equations in Eqs. (10) were numerically integrated over one orbit of θ^*. Said $a_{num,2\pi}$, $e_{num,2\pi}$ and $\omega_{num,2\pi}$ the vectors resulting form the numerical integration of Eqs. (10), then we have:

$$a_{2\pi} = a_{num,2\pi} - \left(a_0 + \frac{\Delta a}{2\pi} (\theta^* - \theta_0^*) \right)$$

$$e_{2\pi} = e_{num,2\pi} - \left(e_0 + \frac{\Delta e}{2\pi} (\theta^* - \theta_0^*) \right)$$

$$\omega_{2\pi} = \omega_{num,2\pi} - \left(\omega_0 + \frac{\Delta \omega}{2\pi} (\theta^* - \theta_0^*) \right)$$ \hspace{1cm} (15)

from which the amplitudes of the periodic components can be computed as:

$$C_a = \frac{\max_{\theta^*} a_{2\pi} - \min_{\theta^*} a_{2\pi}}{2}$$

$$C_e = \frac{\max_{\theta^*} e_{2\pi} - \min_{\theta^*} e_{2\pi}}{2}$$

$$C_\omega = \frac{\max_{\theta^*} \omega_{2\pi} - \min_{\theta^*} \omega_{2\pi}}{2}$$ \hspace{1cm} (16)

where $\theta^* \in [\theta_0^*, \theta_0^* + 2\pi]$. Since Eqs. (15) come from a numerical integration, this calibration process is time consuming. However it needs to be performed once and for all, given the asteroid and the proportionality constant of the acceleration k. In fact it was verified that for low-thrust action the amplitude of the periodic components of the perturbation is almost constant over a number of integration periods that are sufficient to deviate the asteroid by a considerable distance.

Through the calibration process the second and the forth term in Eq. (14) can be determined. The former term is required to find the initial condition for the secular variation of the orbital parameters. For example, Fig. 3 compares the semi-analytical expression of the eccentricity (continuous bold line) to the numerical one (continuous normal line) for asteroid Apophis. The dot line represents the mean variation instead (dot line). Table 2 summarizes the maximum of the relative error between the semi-analytical and the numerical integration of e, a, ω, over 10 revolutions of θ^*, for low (Apophis) and a high-elliptic asteroid (1979XB) respectively.
In order to properly take into account the periodic variation of the mean anomaly within an interval smaller than one revolution, the corresponding Gauss’ equation has to be integrated over θ^\prime:

$$\frac{dM}{d\theta^\prime} = \left[n - \frac{h}{e\mu v} \left(1 + \frac{e^2 r}{p} \right) \sin \theta a \right] \frac{r^2}{h}$$

in which $e(\theta^\prime)$, $a(\theta^\prime)$ and $\omega(\theta^\prime)$ are expressed through Eqs. (14). The relative error on M with respect to the full integration of Eqs. (10) is represented in Fig. 4a and Fig. 4b:
Note that introducing the periodic terms allows for the computation of the evolution of the orbital elements starting from any angular position along the orbit. In fact, if the point when the deviation action commences (i.e. point 0 in Eqs. (14)) is different form the pericenter, the initial mean parameters are different from the initial osculating elements. The periodic terms instead assure that the required accuracy for a deviation maneuver starting at any angular position. This would have not been achieved by using other formulations \cite{18-20} that account only for the secular variations.

V. Time Formulation

In some applications the semi-analytical formulae introduced in section III and IV are enough to describe a low-thrust trajectory. The variation of the orbital parameters over an integer number of full revolutions of the angle θ^r can be calculated directly from Eqs. (11); for the last revolution, the periodic components are counted together with the secular variations through Eqs. (14). This approach, called latitude formulation in the following, does not use the time as independent variable. It allows a considerable saving in computational time and at the same time it provides good accuracy, comparable with a numerical integration with low tolerance.

However, the time is required when dealing with the asteroid deviation problem since the component of the deviation associated to the shift in time has to be taken into account. In fact the latitude formulation accounts only for the shift in position of the asteroid. Given the thrust arc $[t_i, t_j]$, we want to apply the described semi-analytical formulation in order to find the displacement of the asteroid after a given time. Eqs. (11) are used to compute the variation of the orbital elements over the number of full revolutions contained in the time interval $[t_i, t_j]$. Whereas, for the remainder of the thrusting arc, the element differences are calculated using Eqs. (14) and (17). The interval $\Delta \theta^r$ corresponding to the time interval $[t_i, t_j]$ is computed by numerically integrating Eq. (9). Note that the terms corresponding to the secular variation of the parameters in Eqs. (14) are calculated updating a^r, e^r and ω^r at each orbital revolution.

Given the asteroid identification number i_{ASTID} and the proportionality constant of the acceleration k, the calibration procedure gives the amplitude of the periodic component of a, e and ω (Step 0). Once computed, the values of C_a, C_e and C_ω are kept constant for every $t \in [t_i, t_j]$ and for every interval $[t_i, t_j]$. The algorithm proceeds with the calculation of the upper limit on the number of revolutions contained in the interval $[t_i, t_j]$; the quotient of the division between $(t_j - t_i)$ and the nominal period of the asteroid is rounded to the nearest integer towards infinity (Step 1). In fact due to the perturbation introduced by the low-thrust action, the time to perform a full revolution of θ^r is different from the one of the unperturbed orbit. For each revolution, the value of the secular variation of the orbital parameters is computed with Eqs. (11) (Step 2), updating at each integration step (which is one period long) a, e, and recalculating the elliptic integrals (12) and (13). Once the secular variations are available (Step 3), the value of $\Delta \theta^r$ corresponding to the thrust arc and the exact number of revolutions are computed through Eq. (9), with the orbital parameters computed through Eqs. (14). The secular variations of the parameters calculated in step 2 are added up over the number of full revolutions (Step 4), while the calculation of the variation of the orbital elements in the reminder of the thrust arc is performed through the evaluation of Eqs. (14) and the integration of Eq. (17) (Step 5). Note that $a(\theta^r)$, $e(\theta^r)$ and $\omega(\theta^r)$, given by Eqs. (14), are calculated updating the values of $\Delta \tau$, Δe, $\Delta \omega$ at each revolution. The output of the algorithm is the total variation of the orbital elements over the interval $[t_i, t_j]$. The overall process is sketched in Fig. 5.
A. Accuracy Analysis

The accuracy of the time formulation was verified by computing the relative error \(e_{r, \text{time formulation}} \) between the deviation \(\delta r_{\text{analytical,fig}} \), calculated through the algorithm in Fig. 5, and the deviation \(\delta r_{\text{propagated,fig}} \), computed with the numerical integration of Eqs. (3):

\[
e_{r, \text{time formulation}} = \frac{\| \delta r_{\text{propagated,fig}} - \delta r_{\text{analytical,fig}} \|}{\| \delta r_{\text{propagated,fig}} \|}
\]
The relative error was computed for increasing values of the proportionality constant \(k \). Fig. 6a and Fig. 6b report \(e_{\text{r, time formulation}} \), calculated with the nominal value of \(k \) (set in section VI), 10\(k \) and 100\(k \), respectively for asteroid Apophis and 1979XB. The values of \(e_{\text{r, time formulation}} \) are plotted against the push time \(t_p - t_f \), which was set equal to the time-to-impact \(\Delta t \) (i.e. \(t_p = t_{\text{NEO}} \)).

Fig. 6 Relative error of the time formulation. a) Asteroid Apophis (\(k = 2.2 \cdot 10^5 \text{ km}^3/\text{s}^2 \)). b) Asteroid 1979XB (\(k = 2 \cdot 10^4 \text{ km}^3/\text{s}^2 \)).

The high value of the relative error when \(\Delta t < T_{\text{NEO}} \) is due to the approximation, introduced with the periodic components of the orbital elements in Eqs. (14). For \(\Delta t < T_{\text{NEO}} \) the difference between orbital elements of the perturbed and the nominal orbit \(\delta \alpha \) is of the same order of magnitude of the approximation error of the periodic components. As a consequence the relative error difference of the orbital elements

\[
e_{\text{r}}(\delta \alpha) = \frac{\delta \alpha_{\text{propagated}} - \delta \alpha_{\text{analytical}}}{\delta \alpha_{\text{propagated}}}
\]

is high. In particular the error on the assessment of the orbital parameters \(a \), \(e \) and \(\omega \) affects the difference of mean anomaly which significantly contributes to the terms in Eqs. (1). Fig. 7 represents the relative error on \(\delta M \) for two asteroids.
Fig. 7 Relative error on δM. a) Asteroid Apophis. b) Asteroid 1979XB.

Hence the time formulation can be substituted to the numerical integration only for a thrust arc Δt longer than one orbital revolution. On the other hand, when low-thrust strategies are selected, the thrust arc is in general longer than $1 \ T_{\text{NEO}}$. Fig. 8 depicts the percentage of saving in computational time of the semi-analytical approach, with time formulation, with respect to the numerical integration. When $\Delta t > 1 \ T_{\text{NEO}}$ the gain is around 40% and it increases with the length of the push arc.

Fig. 8 Percentage of saving in computational time by using the semi-analytical time formulation with respect to the numerical integration of Gauss’ equations. a) Asteroid Apophis. b) Asteroid 1979XB.

VI. NEO Deviation Missions

In this section, the analysis of some NEO deviation missions is presented. Two asteroids were selected, based on their orbital parameters: Apophis with low eccentricity and inclination and 1979XB with high eccentricity and high inclination ($e = 0.7, i = 25^\circ$). The orbital elements that are most significant for the following analysis are reported.
in Table 3, together with the minimum orbit interception distance and the mass of the asteroid. The MOID Δr was calculated using the Earth’s ephemerides on 27 January 2027 at 12:00 hrs, taken from analytic ephemerides which approximate JPL ephemerides de405**. Note that, the actual MOID varies with time 26, due to the actual orbit of both the Earth and the asteroid. On the other hand, the aim of this work is not to reproduce any specific and realistic impact scenario, but rather to assess the performance of a low-thrust deviation action over a wide range of mission opportunities. A more accurate calculation of the MOID would produce a more precise estimation of the actual achievable deviation but would not invalidate the results in this paper.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apophis</td>
<td>0.922</td>
<td>0.191</td>
<td>3.331</td>
<td>30706</td>
<td>4.6·10^{10}</td>
</tr>
<tr>
<td>1979XB</td>
<td>2.350</td>
<td>0.726</td>
<td>25.143</td>
<td>3725733</td>
<td>4.4·10^{11}</td>
</tr>
</tbody>
</table>

As a reference case, we consider a spacecraft equipped with a solar mirror with a diameter of 100 m and a dry mass m_d of 895 kg. The spacecraft is launched at a time t_o, selected in a range of 20 y before the possible collision, with maximum hyperbolic excess velocity is 3.5 km/s, and is equipped with engine delivering an unlimited thrust with an $I_{sp} = 3000$ s. Once the spacecraft has intercepted the asteroid, the low thrust deviation maneuver is performed from t_o up to the time at the MOID (i.e. $t = t_{MOID}$); no propellant is assumed to be consumed during the deviation phase, but a 25% margin on the total wet mass is considered, to account for station keeping and mirror deployment operations. Table 4 summarizes the key parameters of the mission.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apophis</td>
<td>0.922</td>
<td>0.191</td>
<td>3.331</td>
<td>30706</td>
<td>4.6·10^{10}</td>
</tr>
<tr>
<td>1979XB</td>
<td>2.350</td>
<td>0.726</td>
<td>25.143</td>
<td>3725733</td>
<td>4.4·10^{11}</td>
</tr>
</tbody>
</table>

The value of k was set according to the model of the solar collector developed in Ref. 28. The value of k was chosen in order to obtain the same order of acceleration provided by a solar inflatable mirror, with a diameter d_m of between 100 and 110 m, along the range of distances from the Sun covered by the asteroid during its motion. Fig. 9 compares the acceleration computed through the full model described in Ref. 28, against Eq. (8), over a feasible range of distances for asteroid Apophis. Between the orbit apocentre and pericenter, Eq. (8) (solid line) gives an acceleration comparable with the one calculated through the full solar collector model (dash lines). Note that Eq. (8) does not take into account the decrease of the mass of the asteroid due to the ablation of the material.

[^http://naif.jpl.nasa.gov/naif/pds.html]
Table 5 reports the values of the acceleration constant k for each asteroid, together with the average of the thrust acceleration on a nominal orbit of the asteroid, according to Eq. (8), the average of the Sun gravitational acceleration and the ratio between the two accelerations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apophis</td>
<td>$2.2 \cdot 10^5$</td>
<td>$1.2 \cdot 10^{-11}$</td>
<td>$6.8 \cdot 10^{-8}$</td>
<td>$1.7 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>1979XB</td>
<td>$2 \cdot 10^4$</td>
<td>$3.5 \cdot 10^{-13}$</td>
<td>$9.0 \cdot 10^{-9}$</td>
<td>$3.9 \cdot 10^{-5}$</td>
</tr>
</tbody>
</table>

A multi-objective optimization was performed to minimize the vector objective function:

$$\min \left(m_0, \ t_w, -\left(\| \Delta r + \delta r \| - \| \Delta r \| \right) \right)$$

(18)

with respect to the launch date, the time of flight and the hyperbolic excess velocity. In Eq. (18) m_0 is the wet mass at the Earth defined as:

$$m_0 = \left(m_d + m_p \right) \cdot 1.25$$

where m_p is the propellant mass for the transfer. $t_w = t_{MOID} - t_d$ is the warning time and $\| \Delta r + \delta r \|$ is the total deviation to be maximized. The transfer trajectory was calculated through a shape-based method 21,29 and a hybrid optimization approach, blending a stochastic search with an automatic solution space decomposition technique 30,31, was used for the solution of problem in Eq. (18).

A. Apophis Deviation Mission

Fig. 10 represents a set of launch opportunities for a deviation mission to Apophis, assuming that the asteroid is at the MOID on the 7th of July 2027 (10049 MJD2000). Note that the Earth is not at the MOID on the same date, because the aim of these test cases is to measure the achieved deviation not to reproduce a real impact scenario.
The launch dates and transfer times in Fig. 10 correspond to the set of Pareto optimal solutions in Fig. 11a. In Fig. 10 we can see that a wide range of launch opportunities are available every year between 2010 and 2030, though the required transfer time might change significantly. In particular we can identify two groups of solutions around 5000 MJD2000 and 7500 MJD2000 with a short transfer time (i.e. short warning time), a scattered set of solutions with a transfer time between 500 and 600 days and three groups of solutions with long transfer time. Note that we used a non-exhaustive stochastic search process, therefore more solutions can exist in the same range of launch dates. In Fig. 11a, the three axes represent the components of the objective function Eq. (18); the z-axis contains the magnitude of the deviation $\|\mathbf{r}\|$. The mass into space m_0, that was limited to 5000 kg in this analysis, is a function of the mass of propellant required to perform a transfer from the Earth to the asteroid. In the case of Apophis a mission using a solar collector with a diameter of 100 m, would achieve deviations of the order of 10^6 km, in a time range of 20 years of warning time, while solutions with 1000 days of warning time have a deviation of about 20000 km.

The modulus of the achieved deviation is proportional to the length of the thrust interval $\Delta t = t_{\text{tw}} - t_i$ and it has a periodic trend with the angular position of the point of interception, as shown in Fig. 11b. The gray scale represents the value of the true anomaly (in degrees) at interception.

Fig. 11 Deviation mission to Apophis.
a) Pareto front. Launch mass, warning time and magnitude of the deviation are represented on the three axes. b) Achieved deviation as a function of the time length of the thrust arc.
Now, neglecting the transfer phase and assuming the same value of the acceleration constant k, the sensitivity of the deviation to the in-plane orbital elements a, and e of the nominal orbit of the asteroid can be investigated. Several values of semi-major-axis and eccentricity are considered, covering the range of in-plane elements for a group of 338 Aten asteroids from the JPL catalogue††. The range for semi-major axis in AU is $0.64 < a < 0.99$ and the range for eccentricity is $0.013 < e < 0.89$. For each value of eccentricity and semi-major axis the corresponding orbit is computed keeping the other orbital elements equal to the parameters of Apophis. The deviation is calculated for increasing values of the pushing time, from 1 d up to 20 years before the date at the corresponding MOID.

The modulus of the deviation of the asteroid at the MOID is displayed in Fig. 12a as a function of the pushing time. Note that, as a consequence of the acceleration law, which goes with the inverse of the distance from the Sun, the achievable deviation for a fixed warning time decreases with the increase of the nominal semi-major axis. This is clear if we analyze the first equation of Eqs. (3) and we substitute the value of the acceleration:

$$\frac{da}{dt} = \frac{2a^2v}{\mu r^2}$$

In fact, this term is proportional to $a^{-3/2}$ and is the term which mostly influences the value of the deviation, because it contributes to the shift in time.

As we can appreciate, from Fig. 12b, the relative error with the precise numerical integration does not exceed 10^{-2}, which means that the accuracy of the analytical formulae is good in the selected range of values of the semi-major axis.

The sensitivity analysis to the eccentricity, instead, is shown in Fig. 13. In this case (see Fig. 13a), for the same pushing time, the magnitude of the deviation increases, with the increase of the eccentricity. Also the fluctuations within the orbital period are more visible. The local maxima correspond to an interception point prior to the pericenter.

It is very interesting to note that a good accuracy is assured also for different values of eccentricity, within the range $0.013 < e < 0.89$. Fig. 13b shows the relative error of the time formulation. Note that the accuracy of the time

†† Data available online at http://neo.jpl.nasa.gov/cgi-bin/neo_elem [Retrieved 05 August 2008].
formulation is in general lower than the accuracy of the latitude formulation. In fact, the former one needs a further operation, which is the determination of the value of $\Delta \theta'$ corresponding to the thrust arc and the exact number of revolutions (see Step 3 in Fig. 5).

![Graph A](image1)

![Graph B](image2)

Fig. 13 Sensitivity of the deviation to the eccentricity. The white line represents Apophis case ($e = 0.191$). a) Deviation achieved for orbits with different values of eccentricity and for increasing values of thrust interval. b) Relative error for different values of eccentricities.

B. 1979XB Deviation Mission

The launch opportunities for a deviation mission to asteroid 1979XB are represented in Fig. 14. The test case close approach occurs on the 20th of May 2030 (11097 MJD2000). In this case, the launch opportunities are grouped in single stripes with an average transfer time ranging between around 200 and 800 days. The corresponding set of Pareto optimal solutions is shown in Fig. 15a, which shows that the maximum achieved deviation is of the order of 10^5 km, since the mass of the asteroid is 4.4×10^{11} kg, significantly higher than the mass of Apophis.

![Graph C](image3)

Fig. 14 Launch opportunities for a deviation mission to 1979XB.
The high eccentricity of the orbit of the asteroid 1979XB emphasizes the periodicity of the achievable deviation with Δt (see Fig. 15b where the grey scale indicates the angular position at interception). The considerable step in the value of the deviation is in correspondence of an interception prior to the pericenter. This effect is amplified for this asteroid, since its orbit is highly elliptical.

![Graph showing deviation mission to 1979XB.](image)

Fig. 15 Deviation mission to 1979XB.

a) Pareto front. Launch mass, warning time and magnitude of the deviation are represented on the three axes. b) Achieved deviation as a function of the time length of the thrust arc.

Again we performed the same analysis of sensitivity to the semi-major axis and the eccentricity, by computing the deviation for a range of a and e and by keeping the other parameters equal to the one of 1979 XB, which belongs to Apollo class. While the range of the eccentricity is always $0.013 < e < 0.89$, for the semi-major axis a range of $1.0006 < a < 3.595$ AU was considered, as the range of semi-major axis of the Apollo class, taken from the JPL catalogue‡‡.

Also in this case (see Fig. 16a) the value of the deviation, for a fixed pushing time, decreases with the increase of the semi-major axis (the 1979XB case is represented in white line). The different shape with the orbital period, with respect to Fig. 12a is due to the higher eccentricity ($e = 0.726$).

Finally, the accuracy is represented in Fig. 16b. The relative error, despite being always under $3 \cdot 10^{-2}$, increases with the semi-major axis, for fixed value of the pushing time.

‡‡ Data available online at http://neo.jpl.nasa.gov/cgi-bin/neo_elem [Retrieved 05 August 2008].
The sensitivity to eccentricity is depicted in Fig. 17. As already observed in Fig. 13a, for the same pushing time, the magnitude of the deviation increases with the increase of the eccentricity (see Fig. 17a). Also in this case a good accuracy is achieved for different values of eccentricity, within the range $0.013 < e < 0.89$. Fig. 17b shows the relative error of the time formulation.
VII. Conclusion

In this paper, a solution to the asteroid deviation problem in the case of a low-thrust deviating action is proposed. Proximal motion equations were used to compute the achieved deviation at the minimum orbit interception distance and semi-analytical formulae were derived to calculate the total variation of the orbital elements at the end of the thrust arc. The proposed semi-analytical formulation was proven to provide a significant saving in computational time with respect to the direct numerical integration of Gauss’ equations. In particular, for the anomaly formulation the saving in computational time is up to one order of magnitude. The time formulation displayed a lower saving because, for the specific application presented in this paper, the accuracy requirements are quite stringent. Nonetheless, for very expensive calculations, like the generation of the Pareto sets, that require several hundred thousands of function evaluations, the semi-analytical formulae allowed the generation of double the number of Pareto sets in the same computational time. Moreover, the gain in speed is not compensated by an equivalent loss in accuracy. The results in the paper show that the relative error on the variation of the orbital elements is small for a push interval longer than one orbital period and remains small for long spirals. On the other hand for shorter periods, numerical integration has to be used because more accurate. Finally, the proposed semi-analytical formulae are accurate for a wide range of values for eccentricities, semi-major axis and accelerations, suggesting their use for the fast generation of first guess solutions for long escape or capture spirals.

The paper presents two applications of the semi-analytical formulation to the generation of sets of Pareto optimal solutions, for the design of mitigation missions to asteroid Apophis and 1979XB. For both asteroids, a wide range of launch opportunities have been found, between 2010 and 2030, with an achieved deviation that grows above the Earth-Moon distance for warning times above 20 years. For shorter warning times, between 3 to 5 years, the achievable deviation is of the order of the radius of the geostationary orbit. The value of the achieved deviation presents a periodic trend with the true anomaly of the interception point, in particular when the eccentricity of the asteroid is high, an interception prior to the pericenter is significantly more effective than an interception after the pericenter.

References