Mechanical torque is modelled using a sinusoidal variation
\[T_{MECH} = T_a + T_0 \sin(2\theta) \] (2 bladed rotor)

Electrical torque control is parameterised by
\[q = \frac{T_{ELEC}}{T_{MECH}} \]

Torque control strategies can vary between two extremes:
\[q = 0 \] (fixed electrical torque) and \[q = 1 \] (fixed rotor speed)

Depending on the strategy, there can be a torque imbalance between \(T_{MECH} \) and \(T_{ELEC} \) resulting in a changing rotor speed:
\[T_{MECH} - T_{ELEC} = f\alpha \]

The variance in electrical torque and/or rotor speed will effect the copper and iron losses experienced by the generator

Copper Losses:
\[P_{Cu} = R \left(I^2 + \frac{1}{2} (qI\Delta) \right)^2 \]
\[P_{Fe} = \sum \left(A_{h}I_r^2 + A_{d}I_r^2 \right) B_{ref}^2 m_i \]
Both \(f_r \) & \(f_s^2 \) proportional to \((1 - q)\)

Iron Losses:
\[\propto q^2 \]

Generator cost depends on peak electrical torque loading

Generator Case Study for Large Offshore VAWT
Generator is 5MW DD PMG for use in offshore H-rotor VAWT, see paper for specs

 knocks vary for different torque factor \(q \) settings.

Iron losses decrease linearly with \(q \)

At this speed losses are of similar magnitude

For 9m/s Losses minimised at \(q=0.4 \)

Generator Cost depends on peak electrical torque loading

Comparing how losses vary for different torque factor \(q \) settings.

Copper losses increase with \(q^2 \)

Iron losses decrease linearly with \(q \)

At this speed losses are of similar magnitude

For 9m/s Losses minimised at \(q=0.4 \)

Peak Electrical Torque Loading

Future research: aerodynamic efficiency from speed variation (potential loss at low \(q \), limited effect due to large rotor inertia); rescaling the generator (smaller generator with limit on \(q \) at rated)

PhD Overall Aim: optimise the VAWT powertrain design to minimise Cost of Energy & compare with commercial HAWTs

Vertical Axis Wind Turbine Case Study: Costs and Losses associated with Variable Torque and Speed Strategies

Michael Argent1, Alasdair McDonald1

1 CDT Wind Energy Systems, Rm 3.36, Royal College Building, University of Strathclyde, 204 George Street, Glasgow, G1 1XW

michael.argent@strath.ac.uk

This research was funded by the EPSRC through the Centre for Doctoral Training in Wind Energy Systems at the University of Strathclyde, award no. EP/G037728/1.

www.strath.ac.uk/windenergy