Electrical System Design for the Proposed 1GW Beatrice Offshore Wind Farm

Dr. Graham Ault
Outline

- Background
- Drivers
- Electrical system conceptual designs
- Design issues
- Design approach
- Conclusions
Beatrice Offshore Wind Farm Background

- Demonstrator programme will install 2 x 5MW RePower wind turbines
- Existing platforms to be used to connect demonstrator wind turbines and infrastructure can be used for full scale 1GW wind farm
- Research programme includes:
 - Environmental
 - Wind turbines and structures
 - Operation and maintenance
 - Electrical
Specific Drivers for Beatrice Wind Farm

- Existing offshore infrastructure
- Desire to go deeper offshore
- Philosophy of very large-scale harnessing of energy (cf. oil & gas) and renewables
- UK renewables incentives
- EU, DTI and Scottish Executive support
Beatrice 2 x 5MW Demonstrator Wind Farm

Isometric sketch of subsea cable routes

- Route of topsides cables across bridge from AD platform for options 2 and 3
- Alternative options:
 1. Spare/redundant conductor
 2. Water winning pump cassion
- Existing offset riser spool piece removed and replaced
- Preferred option - water injection riser AP

Route of subsea cables
Offshore Collector System
Conceptual Designs
‘Radial’ clustered wind turbines connected to single hub

- Simple control
- Relatively inexpensive
- Poorer reliability
- Switchgear more straightforward
‘Single sided ring’ clustered wind turbines connected to single hub

- Ring operated in open configuration
- More expense in cabling (run length plus loss of tapering)
- Greater security
‘Double sided ring’ clustered wind turbines connected to single hub

- Ring operated in open configuration
- More expense in cabling (possibility of partially rating cables)
- Greater security
- Upper limit on cable ratings a possible constraint
‘Star’ clustered wind turbines connected to single hub

- Reduced cables ratings (and expense)
- Good security
- Good voltage regulation
- Switchgear arrangement more complex and expensive
‘Multiple hub’ arrangement with radial clustered wind turbines

- Lower losses through higher voltage collection
- More expensive EHV cables?
- Multiple hubs provides greater security but more cost
‘Multiple hub ring’ arrangement with radial clustered wind turbines

- Enhanced collector system security
- Greater operational flexibility
- More expense in multiple hubs and higher voltage collection
- Tried and tested in onshore distribution and sub-transmission
DC collector system arrangement with radial clustered wind turbines

- Fits with future fully converted turbine generators
- Less expense in HVDC transmission to shore
- Costs within collector system unclear?
- More costly DC switchgear
Electrical Collector System
Design Issues
Beatrice 1GW Wind Farm Design Issues

- Turbine generator technology: FSIG, DFIG, Fully converted
- Number of turbines per cluster and cluster formation
- Electrical cabling: length, runs, capacity, voltage level
- Hub design: number, plant required
- Reactive compensation requirement
- Operational Regime
- Protection and control
- Plant physical characteristics
Beatrice 1GW Wind Farm Design Criteria

- Collector system security
- Power flows, voltage regulation and losses
- Fault currents
- Stability
- Power quality
- Operational restrictions
- Economics
Optimal Network Planning: Demand

1. Area Demand Assessment
2. Substation Location & Rating
3. Cable Routing & Rating
Optimal Network Planning: Generation

1. Area Resource Assessment

2. Substation Location & Rating

3. Cable Routing & Rating
Optimal Collector System Planning

- Distribution networks main drivers are demand security and adequacy
- Offshore collector system drivers are different:
 - Economy
 - Availability
- Resource assessment is very different from load demand
- Unit costs for substations and circuits are different
Conclusions

- Downwind demonstrator programme and research programme underway
- General electrical collector system conceptual designs identified
- Design optimisation for 1GW wind farm in formulation
- Power system analysis programme now initiated
- Initial results show serious challenges for 1GW collector system