THE ULTRAPHONIX PROJECT: ULTRASOUND VISUAL BIOFEEDBACK FOR HETEROGENEOUS PERSISTENT SPEECH SOUND DISORDERS

Joanne Cleland¹, James M. Scobbie², Zoe Roxburgh² and Cornelia Heyde²

¹University of Strathclyde, UK, ²Queen Margaret University, UK
joanne.cleland@strath.ac.uk, jscobbie@gmu.ac.uk, roxburgh@gmu.ac.uk, ch Heyde@gmu.ac.uk

BACKGROUND

- Ultrasound Visual Biofeedback (UVB) shows promise as a technique for the remediation of persistent Speech Sound Disorders (SSDs).³
- UVB allows the surface of the tongue (Fig 1) to be imaged in real time and used as a biofeedback device in a motor-learning paradigm.
- Many current studies focus on the remediation of /r/ (e.g. North America) despite ultrasound being useful for imaging most lingual consonants and all vowels.
- Most current studies use a hand-held ultrasound probe and thus do not report on diagnostic information and phonetic insights gleaned through recording of high-speed ultrasound.

ANALYSIS

- Data is acquired at each assessment and therapy session.
- Six untreated assessment probes (grey boxes) are prioritised for ultrasound and perceptual analysis.
- Ongoing annotation of the therapy target and any minimal pairs. For example, for children who are persistently velar fronting, the burst of /r/, /l/ in all words and /r/, /l/ from suitable minimal pairs are annotated.
- Spline fits are exported to the AAA Workspace for qualitative analysis and co-ordinates are exported for quantitative analysis of differences in tongue shape.

Example Ultrasound Results: 04M

Perceptual Analysis

The DEAP phonotest subtest and probe wordlist are transcribed by a phonetician blind to the diagnosis of each child and to the intervention time point.

- DEAP is scored for % consonants correct (PCC).
- Probes are scored for % treated segment correct (PCC:PTC).

For example, if velars are treated, the number of correct-sounding (i.e. phonetically accurate) velar stops from a 105 item list are presented as a % PCC.

Preliminary Results: First Cohort

- Six children completed or near completion.
- Table (below) shows the age of the children and the phonological/phonetic pattern targeted in therapy alongside the number of sessions required to learn the new articulation.

Example ultrasound analysis

Participant	Sex	Age	Target	First New Articulation	First New Articulation (FNA) Date
01 | F | 8.8 | Velar fronting | Session 2 | 04 Average (FNA) [tabs] |
02 | F | 7.8 | Cluster Reduction | Session 1 | 02 Average (FNA) [tabs] |
03 | F | 10.11 | Velar fronting | Session 2 | 03 Average (FNA) [tabs] |
04 | F | 7.2 | Velar fronting | Session 3 | 04 Average (FNA) [tabs] |
05 | M | 6.5 | Vowel Disorder | Session 3 | 05 Average (FNA) [tabs] |
06 | M | 6.4 | Post Alveolar fronting | Session 4 | 06 Average (FNA) [tabs] |

Inclusion and exclusion criteria:

- 20 Scottish English children aged 6 to 15.
- Include difficulty with lingual articulations.
- Include children with diagnosis of SSD, e.g. articulation disorder, phonological disorder, Childhood Apraxia of Speech.
- Include concomitant language impairments, mild hearing loss or mild learning difficulties.
- Exclude major physical disability or structural abnormality of the vocal tract are excluded.
- Threshold: must be less than 20% correct at baseline in targeted consonants/vowels.
- Baselines: must be stable.

Design:

- Single-subject designs are recommended in clinical therapies research to explore feasibility and client outcomes with newer and little studied therapies.
- Using a multiple baseline design across participants allows us to create individual targets for therapy where the participant group is likely to be heterogeneous.

PARTICIPANTS and DESIGN

Ultrasound Setup

- Ultrasound Sonolof machine, C9-5/10 probe.
- Articulate Assistant Advanced User Guide.
- DEAP is scored for % treated segment correct (PCC).
- Headset (Fig 1, left) used to stabilize the ultrasound probe during assessments and therapy.
- Simultaneous acoustic and lip-camera recordings.

PROTOCOL

- Participant Referred from Speech & Language Therapist.
- The Intelligence and Context Scale (ICS).
- Target Selection.
- DEAP: Phonetic and phonological process analysis performed. Common systematic error (developmental /r/ errors expected) identified and untrained Probe wordlist identified.
- Therapy: 10 Sessions of UVB.
- Mid-Therapy Probe: Motor-based therapy, beginning with elicitation of the new articulation in a facilitative coarticulatory context.
- Begin with level 0, the child progresses to the next level only when they are able to produce 8/10 tokens at that level correctly.

CONCLUSIONS

- Ultrasound Visual Biofeedback shows promise as both a diagnostic tool and motor-based speech therapy in children with persistent Speech Sound Disorders.
- Results so far show rapid acquisition of new articulations in the first few sessions (mode = session 1) but slower generalisation to untreated words.
- Ongoing ultrasound analysis is also providing evidence of a range of abnormal tongue shapes (for example undifferentiated lingual gestures) suggesting a motoric cause of persistent speech sound disorders, even in children with pre-existing diagnoses of "phonological disorder".

References