A micrometer-scale integrated silicon source of time-energy entangled photons

DAVIDE GRASSANI1, STEFANO AZZINI1, MARCO LISCIDINI1, MATTEO GALLI1, MICHAEL J. STRAIN2,3, MARC SOREL2, J. E. SIPE4, AND DANIELE BAJONI5,*

\begin{itemize}
\item 1Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy
\item 2School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
\item 3Institute of Photonics, University of Strathclyde, Glasgow G4 0NW, UK
\item 4Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George Street, Ontario, Canada.
\item 5Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, via Ferrata 1, Pavia, Italy
\item *Corresponding author: daniele.bajoni@unipv.it
\end{itemize}

Entanglement is a fundamental resource in quantum information processing. Several studies have explored the integration of sources of entangled states on a silicon chip but the sources demonstrated so far require millimeter lengths and pump powers of the order of hundreds of mWs to produce an appreciable photon flux, hindering their scalability and dense integration. Microring resonators have been shown to be efficient sources of photon pairs, but entangled state emission has never been proven in these devices. Here we report the first demonstration of a microring resonator capable of emitting time-energy entangled photons. We use a Franson experiment to show a violation of Bell’s inequality. The source is integrated on a silicon chip and operates at mW and sub-mW pump power. We show that our source emits in the telecom band with an internal pair generation rate exceeding 10^7 Hz while violating the Bell inequality by more than 7 standard deviations, and outputs into a photonic waveguide. These are all essential features of an entangled states emitter for a quantum photonic networks. © 2014 Optical Society of America

\textbf{OCIS codes:} 270.0270,250.5300,270.5565,230.5750,120.3180

http://dx.doi.org/10.1364/optica.XX.XXXXXX

1. \textbf{INTRODUCTION}

Photonics is increasingly seen as an attractive platform for quantum information processing [1–4]. In quantum cryptography [2, 5] photons have several advantages as vectors of information, due to their long coherence times at room temperature and the possibility of being transmitted over the existing optical fiber infrastructure. The potential scalability and integrability of photonics also suggests its application in quantum simulation and computing [6–9]. The most common strategy for producing entangled photon pairs at room temperature is the use of the parametric fluorescence that can occur in a non-linear crystal [10–12]. While having high generation rates, these sources are very difficult to integrate. An ideal integrated source of entangled photons should be CMOS compatible for cost-effective and reliable production, easily interfaced with fiber networks for long range transmission in the telecom band, and take up little “real estate” on the chip. In these regards, the main results have been obtained by exploiting third order nonlinearities in silicon, and they are focused on the generation of qubits based on polarization entangled photon pairs [13, 14] or entangled time-bins [15, 16] in long waveguiding structures. However, these devices require lengths ranging from fractions of a millimeter to centimeters to produce an appreciable photon pair flux, hindering their scalability. Another kind of quantum correlation of photon pairs is \textit{time-energy} entanglement. This is arguably the most suitable format for the entanglement, as it can be easily manipulated in integrated optical circuits [8], and it can be preserved over long distances in the fiber optical networks [17, 18] needed for communication between devices.
Very recently, it has been shown that the use of time-energy entangled photon pairs in quantum key distribution can enable higher key generation rate compared to entangled photon pairs in lower-dimensional Hilbert spaces [19].

In this work we demonstrate that silicon ring resonators in a silicon-on-insulator platform are an efficient source of time-energy entangled photon pairs. The large field enhancements that can be obtained in resonant structures [20, 21] and ring resonators in particular [22, 23] combined with the large effective nonlinearities achievable in silicon ridge waveguides, of which they are made, allows the reduction of the emitter’s footprint by orders of magnitude and the drastic improvement of the wavelength conversion efficiency, together with the spectral properties of the emitted pairs, with respect to silicon waveguide sources.

2. SAMPLE STRUCTURE AND TRANSMISSION SPECTRA

The sample geometry is illustrated in Fig. 1a: the device is a ring resonator with a radius of 10 µm, evanescently coupled to a straight silicon waveguide on one side of the ring; both the ring and the waveguide have transverse dimensions of 500 nm (width) and 220 nm (height) and are etched on a silicon-on-insulator wafer. The gap between the ring and the waveguide is 150 nm. The coupling of light onto and off of the chip is implemented by mode field converters, and the emission is extracted through a tapered optical fiber (Supplement 1). A tunable continuous wave laser is used for characterizing the sample, and as a pump for the nonlinear optical experiments (see Supplement 1). While such ring resonators would act as all-pass devices in the absence of scattering losses, they are somewhat akin to integrated Fabry-Perot cavities in that the modes of the electromagnetic field are identified by a comb of resonances. The transmission spectrum from our sample is shown in Fig. 1b, where the dips occur due to scattering losses at the resonances. The free spectral range is about 9 nm, and the resonance quality factors (Qs) are, on average, around 15000. The minimum transmission is about 3-5% on resonance, meaning that the ring almost satisfies the critical coupling condition, which maximizes the coupling between the ring and the bus waveguide.

3. NONLINEAR SPECTROSCOPY AND COINCIDENCE MEASUREMENTS

The nonlinear process responsible for the generation of photon pairs is spontaneous four wave mixing [23–27]: two pump photons at frequency ωp are converted into signal and idler photons at frequencies ωs and ωi (as sketched in the inset of Fig. 1b). When using resonant structures, energy conservation implies three equally spaced resonances in energy (ℏωs + ℏωi = 2ℏωp). Another advantage in using ring resonators is that the process is greatly amplified by the resonance, and it has been shown [28] that the generation rate goes as \(R \propto \frac{Q^2 P^2}{R^4} \) where Q is the quality factor of the resonances, R the ring’s radius and P the pump power. In our ring resonators, waveguide dispersion limits the bandwidth over which pairs can be generated for a fixed pump wavelength to a spectral range of about 80 nm, resulting in plentiful choice of possible signal and idler pairs: we have also verified that generation rate is almost the same for the fourth neighbouring resonances from the pump [28]. We note that in fact a single pump pulse will generate a number of entangled signal and idler pairs in parallel, with each entangled pair easily extracted because of their frequencies. But in this work we study only one pair, as highlighted by colors in Fig 1b: we use a resonance around 1550 nm (at the center of the telecommunication c-band) for the pump and its second nearest neighbor resonances for signal and idler; this spectral distance is chosen to optimize filtering of the laser background noise at the signal and idler frequencies.

Four wave mixing spectra are shown in Fig. 2a: two clear peaks of generated photons are evident at the signal and idler...
frequencies. It is important to notice that the pump laser is completely filtered out, so that only spontaneously generated photons are detected. The parametric nature of the emission process is confirmed by the superlinear increase of the generation rate with increasing pumping powers: the quadratic behavior of the generated beams is reported in Fig. 2b, where we plot the estimated generation rate of photon pairs inside the ring resonator together with the output rate [28]. The output rate was directly measured at the sample output, as detailed in the Supplement 1. The internal generation rate was estimated in the following way: we have directly measured a total insertion rate is estimated from the flux measured at the output by

The generation rate can exceed \(10^7\) Hz; this is an extremely high rate, and will be beneficial for all experiments involving coincidence counting. The first step necessary to verify entanglement is to check that signal and idler photons are emitted in pairs: this was assessed via a coincidence experiment, in which the relative times of arrival of idler and signal photons were statistically analyzed [26]. The coincidence measurement shown in Fig. 2c is obtained employing the set-up described in Fig. 3a (detailed in Figure S1 in Supplement 1) by masking the short arm of each interferometer. The total losses undergo by signal and idler in the coincidence experiment are 31 dB and 34 dB respectively.

An instance of a histogram of the arrival times is shown in Fig. 2c, where a distinct coincidence peak is visible over a small background of accidental counts; this is a clear signature of the concurrent emission of the signal-idler pairs. The 3.5 ns offset is determined by the different path lengths of the signal and idler photons. The coincidence measurements, for experimental consistency, were taken using the same set-up used to measure the entanglement as described below, by masking one arm in each interferometer. The losses from the set-up were directly measured for each component, and amount to 31 dB for signal photons and 34 dB for idler photons, giving a total loss of 64 dB on the coincidence rate. Almost all of these losses, as discussed in Supplement 1, are outside the source and are mainly given by the interferometers and the low quantum efficiency of the detectors used in these experiments.

Accidental counts are primarily due to emitted pairs of which only one photon is detected. The accidentals in the coincidence curve mainly come from detection of signal and idler photons belonging to different pairs. As all emission times are equivalent, the signal-to-noise ratio (SNR) is also an indication of how likely it is for multiple pairs to be generated at the same time [29]. In our case the SNR is about 70 in Fig. 2c, and higher than 100 in some of the measurements (see Supplement 1).

4. ENTANGLEMENT TEST ON THE EMITTED PHOTON PAIRS

The photon pairs are emitted simultaneously but, because of the continuous wave pumping, the emission time is indeterminate to within the coherence time of the pump laser; this is several \(\mu s\) in our experiments. This systematic lack of information can lead to the pairs being time-energy entangled, as first pointed out by J. D. Franson [30]. In order to experimentally measure the entanglement we have used a double interferometer [30, 31], as shown in Fig. 3a. Photons at idler frequencies enter one interferometer, while photons at signal frequencies enter the other (Fig. 3a). The unbalance \(\Delta T\) between the two arms of the interferometers must be much greater than the coherence time \(\tau\) of the signal and idler photons to avoid first order interference. In our case \(\Delta T \sim 0.67\) ns while \(\tau \sim 10\) ps (\(\tau\) was extracted from the linewidth of the modes).
times. The earlier peak is due to the signal photon having taken the long path in the interferometer and the idler photon having taken the short path; the reverse holds for the latest peak. The middle peak is due to two indistinguishable paths: both photons taking the long path or both taking the short path. The inability to distinguish from which of these two cases the coincidence event arises, due to the long coherence time of the pump, causes second order interference [30]. The coincidence rate for the central peak is expected to be

\[C(\varphi) = 2C_0(1 + \cos(\varphi + \vartheta)), \]

where \(C_0 \) is the detected coincidence rate measured by covering one arm in each interferometer. Since signal and idler photons

Fig. 4. Entanglement between signal and idler photons. (a)-(d) Histograms of the coincidence rate for four different phase settings. (e) Two photon interference of the double interferometer configuration: the coincidence count rate of the central peak is plotted as a function of the phase \(\varphi_s + \varphi_i \). The integration time is of 120 s for each point and the pump power is 1.5 mW. The dotted black curve is a best fit of the experimental data.

The absence of interference in each single interferometer was verified by varying the path differences independently in each of the interferometers and confirming that there was no change in the counting rate detected by the SSPDs, as shown in the inset of Fig. 3b. Then with the interferometer arms fixed [32] we measured the arrival time of signal photons with respect to idler photons; the generated histograms reveal three relative arrival
propagate in the same direction once they exit the sample, the phase term φ in the above expression is given by the sum of the phases acquired by the photons passing through the long arms with respect to the short ones: $\varphi = \varphi^1 + \varphi^2$; and ϑ is a constant phase term dependent on the unknown actual lengths of the interferometer arms.

The effect of varying φ is shown in Fig. 4 (the full experimental dataset is shown in the Figures S4 and S5 of Supplement 1). While the side peaks, corresponding to distinguishable events, have heights that are independent of φ, the number of the coincidence counts of the central peak oscillate between minima, close to zero events, and a maximum, close to four times the height of the side peaks, as shown in Fig. 4a-d. The height of the central peak as a function of φ is summarized in Fig. 4e. The trend is well fitted by a sinusoid curve of the type of eq (1). For the data of Fig. 4e, the best fit yields a visibility $V_{\text{Meas}} = 89.3\% \pm 2.6\%$ (greater than $1/\sqrt{2}$), proving a violation of Bell’s inequality by 7.1 standard deviations, and so we can conclude that we are generating time-energy entangled photon-pairs [33].

5. DISCUSSION

The experiment was performed for various pumping powers P (Supplement 1), and the results are summarized in Table 1. The Bell’s inequality is violated in all cases and by more that 11 standard deviations in the best case. The visibility is limited by the background due to emission of multiple couples and possibly other parasitic luminescent processes (for instance four-wave-mixing and Raman scattering in the access waveguide and in the optical fibers in the setup): the SNR, as expected, decreases with increasing the pumping power, but it is always sufficiently high to grant entanglement. It is worth noticing that the values of the visibility V_{Meas} reported in the table are obtained by a single fit operation on the raw data without performing any data correction, e. g. without subtracting the dark counts of the detectors). Finally, the maximum measurable visibility is limited by the first order visibility of the interferometers, in our setup $w = 0.95$, which gives the expected visibility $V = V_{\text{Meas}}/w$ (see the last column of Tab. 1).

In conclusion, we have experimentally demonstrated a microstructured, CMOS-compatible source of entangled photons, operating at room temperature with unprecedented capabilities. While ring resonators have long been studied theoretically as a source of quantum correlated states, and pairs of photons emitted from spontaneous four-wave mixing in silicon ring resonators have been detected, with this work the oft-quoted promise that these devices could serve as sources of entangled photons has finally been fulfilled. We confirmed the violation of Bell’s inequality by more than seven standard deviations, and we demonstrated the generation of time-energy entangled photon pairs particularly relevant for telecommunication applications. The source has incomparable operating characteristics. Beyond the high purity of the emitted two-photon states, the spectral brightness per coupled pump power is remarkable, at about $6 \times 10^7 \text{nm}^{-1}\text{mW}^{-2}\text{s}^{-1}$. This is more than four order of magnitudes larger than that reported for entangled photon pairs emitted by long silicon waveguides [13, 15, 23]. Even when compared to room temperature sources of entangled photons based on χ^2 nonlinearities, which are typically not CMOS-compatible, the emission rate reported here is remarkable. It is two orders of magnitude larger than that obtained from GaAs based waveguides [34] for 1 mW of coupled pumping power, and, for the given bandwidth, it is of the same order of magnitude of centimeter long waveguides in periodically poled crystals [11] (see Table 2); while our source has a footprint of less than few hundreds square microns. This small footprint has great advantages for scalability: all the existing know-how of integrated photonics can be directly used with our source, and its micrometric size makes it ideal for integration with other devices on the same chip, e.g. integrated filters for the pump and routing of signal and idler, both functions well established in integrated photonics. In particular, with quantum cryptography protocols in mind, one perspective for the present work would be to take advantage of the silicon photonics industrial know-how to integrate the pump filtering and signal/idler demultiplexing stages on a single "transmitter" chip [35] and implement two "receiver" chips with integrated interferometers. Considering the receiving chips, the coherence time of the signal and idler photons in this work corresponds to a coherence length of about 1 mm in a silicon waveguide, and thus an arm unbalance of some cm would be needed in the interferometers; this can be easily achieved on chip using spiralled waveguides. The main problem hindering this goal is, for the moment, the unavailability of single photon counters integrated on a silicon chip and working at room temperature in the telecom band.

A further advantage of the source reported here is that ring resonators are also a well established industrial standard, already used in modulators, for example. Here we have demonstrated a new, compelling functionality of ring resonators: they can be used as sources of entangled states of light. Their production readiness has an immediate large impact for application, much more than other structures characterized by larger nonlinearities but also a less mature integration [21]. The signal and idler beams have a bandwidth of ~13 GHz, which would allow their use in DWDM network systems without the need of any spectral filtering; the pump powers used here, on the order of dBm, are characteristic of that used in fiber networks; and the pump, signal, and idler frequencies lie in the telecommunications band. We can confidently expect that silicon microring resonators will become the dominant paradigm of correlated photon sources for quantum photonics, both for applications involving the transmission of quantum correlations over long distances, such as quantum cryptography, and for applications involving quantum information processing “on-a-chip”.

6. FUNDING

This work was supported by MIUR funding through the FIRB “Futuro in Ricerca” project RBFR08XMVY, from the foundation Alma Mater Ticinensis and by Fondazione Cariplo through project 2010-0523 Nanophotonics for thin-film photovoltaics. JES acknowledges support from the Natural Sciences and Engineering Research Council of Canada. MJS and MS acknowledge support from the EPSRC, UK.

7. ACKNOWLEDGEMENTS

We acknowledge the technical staff of the James Watt Nanofabrication Centre at Glasgow University.

See Supplement 1 for supporting content.

REFERENCES

Table 1. Violation of Bell inequalities. Summary of the measured parameters for five values of the coupled pump power P. R is the pair emission rate, SNR the signal to noise ratio, V_{Meas} is the visibility of the two photon interference extracted from the experimental raw data and $\frac{V_{\text{Meas}} - \sqrt{2}}{\sigma_{V_{\text{Meas}}}}$ is the number of standard deviation by which the Bell’s inequality is violated. Finally, the visibility V is V_{Meas} corrected for the limited visibility $w = 0.95$ of the interferometers: $V = \frac{V_{\text{Meas}}}{w}$.

<table>
<thead>
<tr>
<th>P (mW)</th>
<th>R (MHz)</th>
<th>SNR</th>
<th>V_{Meas} (%)</th>
<th>$\frac{V_{\text{Meas}} - \sqrt{2}}{\sigma_{V_{\text{Meas}}}}$</th>
<th>V (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25±0.025</td>
<td>0.4 ± 0.11</td>
<td>131.6±16.5</td>
<td>94.8±3.8</td>
<td>6.4</td>
<td>99.8±4</td>
</tr>
<tr>
<td>0.5±0.05</td>
<td>1.7 ± 0.3</td>
<td>120.4±7.9</td>
<td>88.2±4.8</td>
<td>3.6</td>
<td>92.8±5.1</td>
</tr>
<tr>
<td>1.0±0.1</td>
<td>5.8 ± 0.8</td>
<td>64.4±3.3</td>
<td>91.8±1.9</td>
<td>11.2</td>
<td>96.6±2.0</td>
</tr>
<tr>
<td>1.5±0.15</td>
<td>14 ± 1.9</td>
<td>45.1±2.2</td>
<td>89.3±2.6</td>
<td>7.1</td>
<td>94.0±2.7</td>
</tr>
<tr>
<td>2.0±0.2</td>
<td>27 ± 3.1</td>
<td>22.9±1.0</td>
<td>83.8±3.2</td>
<td>4.1</td>
<td>88.2±3.4</td>
</tr>
</tbody>
</table>

Table 2. Comparison between room temperature, integrated entangled photon sources. The values of the Spectral Brightness refers to the coupled pump power and the internal generation rate. * The SNR is inferred from the HOM experiment reported in the article. ** The SNR is calculated from the experimental value of the Fidelity reported in the article.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Structure</th>
<th>Material</th>
<th>Surface (μm2)</th>
<th>SNR</th>
<th>Spectral Brightness ($P = 1$ mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[11]</td>
<td>Waveguide</td>
<td>PPLN</td>
<td>~180000</td>
<td>~6*</td>
<td>~7.5×107 (s$^{-1}$nm$^{-1}$)</td>
</tr>
<tr>
<td>[34]</td>
<td>Waveguide</td>
<td>AlGaAs</td>
<td>~10000</td>
<td>~7**</td>
<td>~6×105 (s$^{-1}$nm$^{-1}$)</td>
</tr>
<tr>
<td>[15]</td>
<td>Waveguide</td>
<td>Si</td>
<td>~5000</td>
<td>~30</td>
<td>~4×105 (s$^{-1}$nm$^{-1}$)</td>
</tr>
<tr>
<td>[16]</td>
<td>CROW</td>
<td>Si</td>
<td>~8000</td>
<td>~8</td>
<td>~3×106 (s$^{-1}$nm$^{-1}$)</td>
</tr>
<tr>
<td>Present Work</td>
<td>µRing</td>
<td>Si</td>
<td>~300</td>
<td>~64</td>
<td>~6×107 (s$^{-1}$nm$^{-1}$)</td>
</tr>
</tbody>
</table>
34. A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G.