Combined Network Coding and Paillier Homomorphic Encryption for ensuring Consumer Data Privacy in Smart Grid Networks

Presented by David Murray, PhD candidate on behalf of the team:

D. Murray, B. Zhao, G. Elafoudi, J. Liao, L. Stankovic, V. Stankovic
Centre for Intelligent and Dynamic Communications
University of Strathclyde, Glasgow, UK
Monitoring domestic energy usage within the smart grid

- How will smart meters be used?
 - Automatic and accurate billing, improve energy usage
 - Enhance energy distribution and efficiency

- How can signal information processing/data analytics turn smart meter data into ‘useful’ information?
 - Inform and enhance current energy information
 - Provide itemised billing down to individual appliances and activities
 - Provide advice on retrofit advice

- How much and what kind of data do we need for effective data analytics?
 - Electricity, temperature, light, humidity, occupancy
 - Data collection 15mins, 1min, 30 sec, 1sec...

- Can we draw better conclusions from individual/household detailed energy consumption?

- How is data collected, where does it go?
- How do we ensure privacy of data and detect tampering?
How we implemented it at Strathclyde to gather smart meter readings

Diagram:

- Energy Sensors
- Ambient Sensors
- Gateway
- House 1
- House 2
- University of Strathclyde Server
- WEB
- CT
- Graphs on the right showing energy consumption over time.
From data acquisition to analytics
Analytics to provide intuitive feedback

- We developed a scalable database that effectively manages incoming smart meter data, and provides an easy-to-query design.

- Designing and developing robust and low-complexity non-intrusive load monitoring disaggregation algorithms for low sampling rate load data (< 1 Hz).

- Appliance characterisation and modelling to provide appliance upgrade recommendations.
Data acquisition, management and repository

- An automated platform for remote data collection and real-time monitoring
 - Including remote and non-broadband customers
 - Keeping communications between home and server to a bare minimum, without compromising on data quality

- Scalable repository of energy and environmental measurements
 - Data checking
 - Easy to add/remove sensors and houses
 - Query for correlations amongst sensor readings in the database
 - Query for correlations across houses (e.g., compare refrigerator consumption across selected houses)
 - Collecting/processing data in real time from a large number of houses (currently 40 houses)
Power Disaggregation

- Non-intrusive appliance load monitoring (NALM): Algorithmic solutions to disaggregate overall household’s power readings to individual appliances

- Find the consumption of individual appliances without using separate individual appliances power meters (IAMs)

- Activity modelling allows for more relative feedback that people can understand and adjust habits
 - Improve: You used X amount of power yesterday on the kettle
 - If you didn’t over fill the kettle you could save.

- Very active research topic
 - Currently, only few commercial solutions that operate well, work only at extremely high sampling rates ~kHz
Smart Meter readings – UK Dept of Energy and Climate Change infrastructure

Block diagram from REFIT project team
Smart grid communications architecture

- Smart metering (SM) system located in houses comprises of a hub and sensor network
 - HAN based on 2.4GHz and 433MHz

- From the houses, data transmitted to Communications Service Provider (CSP) via wireless NAN
 - Communication range 0.25miles
 - At least two CSPs in the range of each house
 - CSPs – routers that forward packets possibly multi-hops

- Data Communication Company (DCC) receives packets from CSP and performs processing

Smart grid communications architecture
Problem statement

- Lots of sensitive personal household data being gathered within the HAN and transmitted via WAN/NAN

- Data contains billing information and energy consumption from which domestic routines can be inferred, inc. when the household is away on holiday…
Security in the smart grid

- Smart grid prone to cyber attacks and tampering due to sensitivity of information in the network

- Key concern is against tampering, eavesdropping and traffic analysis

- Types of attacks expected:
 - Entropy Attacks
 - Packet Erasures
 - Packet Modification / Corruption
 - Eavesdropping / Analysis
Proposed Solution

- Pairing network coding (NC) with Paillier homomorphic encryption (PHE)

- Due to its homomorphic additive and multiplicative properties, PHE simplifies computation of cipher texts and incorporation of linear NC

- Intermediate nodes can still perform NC in the conventional manner without needing access to the system's private key
Random Linear Network Coding (RLNC)

\[X = G \ast M \]

\[x_k = \sum_{i=1}^{S} g_{ik} m_i \]

- \(k \)-th NC symbol/packet
- \(m_i \) – \(i \)-th source message
- \(g_{ik} \) random local encoded coefficient

Benefits compared against traditional routing
- Throughput
- Efficiency
- Scalability
- Resilience to attacks and eavesdropping

Issues
- Larger transmission overhead
- Linear dependency of coefficient vectors
Paillier Homomorphic Encryption (PHE)

p, q are two k-bit primes where k is the security parameter, are random and independent such that:
\[
\gcd(pq, (p - 1)(q - 1)) = 1
\]

\[
n = pq
\]
\[
\lambda = \text{lcm}((p - 1)(q - 1))
\]

Choose random integer g where:
\[
g \in \mathbb{Z}_{n^2}^*
\]

Check modular multiplicative inverse:
\[
\mu = \left(L(g^\lambda \mod n^2) \right)^{-1} \mod n \quad \text{where} \quad L(\mu) = \frac{\mu - 1}{n}
\]

Public Key : (n, g)
Private Key : (λ, μ)
PHE: Encryption and Decryption

Encryption:
For a message $m \in \mathbb{Z}_n$
Select random $r \in \mathbb{Z}_n^*$
Calculate ciphertext using public key:
$$E(m) = c = g^m r^n \mod n^2$$

Decryption:
Given received ciphertext $c < n^2$
recover the message using private key:
$$m = D(c) = L(c^\lambda \mod n^2) \mu \mod n^2$$

Homomorphic Properties
$$E(m) = (g^m r^n) \mod n^2$$
$$E(m_1)E(m_2) = g^{m_1+m_2} (r_1 r_2)^n \mod n^2 = E(m_1 + m_2)$$
$$D(E(m_1)^k \mod n^2) = km_1 \mod n$$
Threat model

We consider the threat posed by an attacker with the following characteristics:

- The attacker can eavesdrop all network links
- Has knowledge of scheme used
- Is computationally bounded
- Can inject or erase packets in the network
Proposed scheme
Proposed scheme – Combined RLNC and PHE encryption

- Each house SM system performs NC on its HAN dataset
- The local encoding vectors used are then encrypted using the public key

\[
c_i(e) = E_{ek}(g_i(e)), \quad (1 \leq i \leq h)
\]

\[
c(e) = [c_1(e), c_e(e), \ldots, c_h(e)]
\]

- CSP performs conventional NC on all incoming encoded and encrypted packets from the houses

\[
g(e) = \sum_{i=1}^{h} \beta_i(e)g(e'_i)
\]

\[
E_{ek}(g(e)) = E_{ek}(\sum_{i=1}^{h} \beta_i(e)g(e'_i))
\]

\[
= \prod_{i=1}^{h} E_{ek}(\beta_i(e)g(e'_i))
\]

\[
= \prod_{i=1}^{h} E_{ek}^\beta_i(e)(g(e'_i))
\]
\[M_1 = [m_1^1 m_2^1] \]

\[X_1 = G_1 M_1 \]

\[E(g_{11}^1), E(g_{12}^1) \]

\[E(g_{11}^2), E(g_{12}^2) \]

\[x_{11} \]

\[x_{12} \]

House1

\[M_2 = [m_1^2 m_2^2] \]

\[X_2 = G_2 M_2 \]

\[E(g_{21}^1), E(g_{22}^1) \]

\[E(g_{21}^2), E(g_{22}^2) \]

\[x_{21} \]

\[x_{22} \]

House2

\[X^{CSP} = G^{CSP} X \]

\[(E(g_{11}^1))^{g_{CSP}^{11}}, (E(g_{12}^1))^{g_{CSP}^{12}} \]

\[x_{11}^{CSP} \]
Proposed Scheme – Decoding & Decryption at Sink

- DCC/sink will first decrypt NC coefficients
- Resulting global encoding vectors are used for RLNC decoding in the conventional way, e.g., using Gaussian elimination
- Note that all houses have knowledge of the public key and only the DCC has knowledge of the private key for decryption
- At the sink decryption can be carried out once a sufficient number of packets from the same generation has been received

\[
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_h
\end{bmatrix} = G^{-1} \begin{bmatrix}
 x^{csp}(e_1) \\
 \vdots \\
 x^{csp}(e_h)
\end{bmatrix}
\]
\[
\begin{align*}
&\chi_{CSP1}^{11} = (E(g_1^{11}))^{g_{CSP1}^{11}}, (E(g_1^{12}))^{g_{CSP1}^{12}}, \\
&\chi_{CSP2}^{11} = (E(g_1^{11}))^{g_{CSP2}^{11}}, (E(g_1^{12}))^{g_{CSP2}^{12}},
\end{align*}
\]

Decrypt encoding coefficients

\[
D((E(g_1^{11}))^{g_{CSP1}^{11}}) = g_{CSP1}^{11}g_1^{11}
\]

Gaussian Elimination for NC decoding

\[
\overline{M} \quad \text{Recovered message}
\]

DCC
Analysis

- Is efficient and does not incur a significantly high overhead
- Features privacy against packet analysis
- Encryption prevents against earliest decoding by packet analysis
- Each message is of the same size helping prevent size correlation and buffering reduces effect of time order correlation attacks
- Inefficient against Pollution and Entropy attacks
Resilience to packet drops

- CSPs dropping incoming packets
- RLNC provides erasure protection, and additional PHE does not affect erasure protection of RLNC
- Lemma1: *If only one CSP is dropping all packets it receives, then all messages from any house can be recovered at the DCC*

Pollution and entropy attacks

- Attacker injects dummy packets
- CSP can generate malicious content that is mixed with incoming packets
- Lemma2: *If only one CSP is injecting malicious content and mixing it with incoming packets, then all messages from any house can be recovered at the DCC*
before decryption

after decryption => Clear separation between corrupted and useful packets
Adaptive threshold to separate corrupted/injected packets from the original ones
Computational Overhead

- Communications Hub (SM) encoding:
 - PHE: $O(N^2)$
 - Multiplications & modulus operations: $O(N^2 \log n)$

- CSP encoding:
 - Per packet $O(N^2 \log n)$
 - Total: $O(N^3 \log n)$

- DCC decoding:
 - $O(N^2 \log n)$
Conclusions

- With smart meter rollouts being deployed worldwide, it is critical to ensure secure transmission of sensitive personal data that is subject to eavesdropping and malicious attacks.

- We propose a combined homomorphic encryption algorithm with network coding that provides security and privacy while maintaining RLNC allowing for a high chance of recovering packets at the sink.

- Open work:
 - Implementation of lightweight verification scheme to prevent pollution attacks propagating throughout the network
 - Assessing robustness to a large scale attacks
 - Practical implementation
Acknowledgements

- All presented work is being addressed as part of two UK Research Council projects by our team, within multi-disciplinary and multi-institutional (academic + industrial) consortiums
 - REFIT: Personalised Retrofit Decision Support Tools for UK Homes using Smart Home Technology
 - APAtSCHE: Aging Population Attitudes to Sensor Controlled Home Energy