Electron acceleration and ionization fronts induced by high frequency plasma turbulence

41st IoP Plasma Physics Conference
London, 14–17 April 2014

Bengt Eliasson

ABP Group, Physics Department, SUPA
Strathclyde University, UK

Collaborators:
G. Milikh, K. Papadopoulos, X. Shao, U. Maryland
E. V. Mishin, Air Force Res. Lab., Albuquerque, New Mexico
K. Ronald, Strathclyde University, UK
Outline

A. Artificial aurora and descending ionospheric fronts in recent experiments

B. High-frequency turbulence induced by large amplitude electromagnetic waves

C. Electron acceleration by strong turbulence, ionization of neutral gas

D. Numerical full-scale modelling of turbulence, ionization and recombination

E. Scaling to laboratory experiments

F. Summary
Natural Aurora Borealis

Photograph by Jan Curtis, near Fairbanks, Alaska
Sketch of experimental setup

The Earth’s ionosphere used as a natural laboratory to study turbulence in an unlimited magnetised plasma.

Diagnostics: Escaping radiation, radars, optical emissions, etc.

Courtesy of Bo Thidé (www.physics.irfu.se)
High Frequency Active Auroral Research Program (HAARP)

HAARP research station, near Gakona, Alaska

Observations of descending aurora above HAARP

Radiation pattern HAARP

HAARP beam 3.4MHz directed along Magnetic Zenith. Beam width about 15°.
Rays of ordinary mode waves

Ray-tracing
\[\frac{dk}{dt} = -\nabla_r \omega \]
\[\frac{dr}{dt} = \nabla_k \omega \]

Appleton-Hartree dispersion relation gives \(\omega(k, r) \)

Magnetic field \(B_0 = 5 \times 10^{-5} \) T, tilted 14.5° to vertical. Electron cyclotron frequency \(f_{ce} = 1.4 \) MHz.

\(f_0 = 3.2 \) MHz transmitted frequency, \(\sim 100 \) m vacuum wavelength.

Ordinary mode waves are reflected near the critical layer where \(\omega = \omega_{pe} \).
Rays closeup near reflection point
Electromagnetic wave propagation. Inhomogeneous, magnetized plasma.

Nonlinear coupling to electron and ion dynamics.
Standing wave pattern vertical electric field

Full wave simulations at different angles of incidence. 1 V/m injected O mode. One millisecond after switch-on of transmitter
Resonant absorption — Spitze angle

Linear absorption takes place at certain angles of incidence between magnetic field angle and vertical.

\[Y = \frac{f_{ce}}{f_0} = 0.4 \text{ and } \theta = 14.5^\circ \]

Spitze angles \(\chi_S = \pm \arcsin\left[\sqrt{\frac{Y}{1 + Y}} \sin(\theta)\right] \approx \pm 8.04^\circ \)

\[T = \frac{\text{absorbed intensity}}{\text{injected intensity}}. \]

Efficient absorption within angles \(\sim \pm 1^\circ \) from Spitze \(\rightarrow \) relatively small region compared to typical beam width.

E. Mjølhus, Radio Science 25, 1321 (1990)
10 milliseconds after switch-on: Turbulence

Coupling between high-frequency electron plasma waves and low-frequency ion waves.
Physics at different length-scales

Small-scale strong Langmuir turbulence: few tens of centimetre structures. Large amplitude electric field envelopes trapped in density cavities.
Electron acceleration by plasma waves

Electrons can surf on the wave if the wave’s and electron’s velocities almost the same. Many waves give random walk and diffusion of electron velocity.

Fokker-Planck equation and diffusion coefficient.

\[\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial z} = \frac{\partial}{\partial v} D(v) \frac{\partial f}{\partial v}, \quad D(v) = \frac{\pi e^2 W_k(\omega, k)}{m_e^2 |v|}, \quad k = \frac{\omega}{v}. \]

Diffusion coefficients and Fokker-Planck solutions (velocity distribution) for different angles of incidence.

Most significant acceleration at 3.5° and 10.5°.
Electrons above 2 eV give rise to optical emissions.
Electrons above 12 eV ionize neutrals to ions (creates a plasma).
Dynamical model for ionization and recombination

- Transport model for energetic electrons through the ionosphere.
- Ionization due to collisions between high energy electrons and neutral atoms.
 - Ionization of atomic and molecular oxygen and nitrogen by high-energy electrons
 \((O + e^- \rightarrow O^+ + 2e^- \text{ and } O_2 + e^- \rightarrow O_2^+ + 2e^-, \text{ etc.})\)
 - Production of molecular oxygen ions and nitrogen monoxide ions via charge exchange collisions
 \((O^+ + O_2 \rightarrow O_2^+ + O \text{ and } O^+ + N_2 \rightarrow NO^+ + N)\)
 - Dissociative recombination between electrons and molecular ions
 \(O_2^+ + e^- \rightarrow 2O \text{ and } NO^+ + e^- \rightarrow N + O).\)
Simulated descending artificial ionospheric layer

- Ionization fronts descending from about 200 km to 150 km in a few minutes, consistent with the experiments.

- Physics on microsecond \rightarrow millisecond \rightarrow several minutes timescales!
Scaling to laboratory experiment

- Decrease length scale a factor 10,000 to fit into experiment on 1-m scale

- Radio waves 3MHz frequency and 100 m wavelength \rightarrow microwaves 10GHz and 3 cm wavelength

- Radio wave intensity 1 mW/m2 \rightarrow microwave intensity 100 kW/m2.

- Plasma density 10^{11} m$^{-3}$ \rightarrow 10^{18} m$^{-3}$–10^{19} m$^{-3}$.

- New linear plasma helicon device planned at Strathclyde University to produce plasmas with typical diameter 50 cm, densities above 10^{18} and magnetic field 0.05-0.1 T.
References on numerical modelling

Summary

- Formation of descending aurora/ionization fronts in experiments. Ionosphere used as a plasma laboratory!
- Electron quasi-linear acceleration by strong Langmuir turbulence
- Optical emissions and ionization by energetic electrons
- Scaling to laboratory experiment
- Physics occurs on vastly different length- and time-scales, (microseconds to minutes, cm to tens of km)!
- Work in progress: Upper hybrid heating and coupling to electron Bernstein modes, stochastic heating, Vlasov simulations.