Optimising 405 nm hins-light technology for patient safe decontamination during arthroplasty surgery

Praveen Ramakrishnan1,2, Michelle Maclean2, Scott MacGregor2, John Anderson2, M. Helen Grant1*
1 Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK 2
The Robertson Trust Laboratory for Electronic Sterilisation Technologies, University of Strathclyde, Glasgow, Scotland, UK

p.ramakrishnan@strath.ac.uk

INTRODUCTION:
Infection rates following orthopaedic arthroplasty surgery are as high as 4%, while the infection rates are even higher after revision surgery 1. The duration of routine arthroplasty surgeries is typically between 1 and 2 hours. 405nm High-Intensity Narrow-Spectrum Light (HINS-light) has bactericidal activity against Hospital Acquired Infection (HAI) related bacterial pathogens including MRSA 2 and hence may aid in reducing the incidence of infections that arise from environmental contamination during arthroplasty surgery.

METHODS:
Immortalised rat osteoblast (OST 5) cells were exposed to 405 nm light at an irradiance of 5mW/cm² in Dulbecco’s Phosphate Buffered Saline (DPBS) at different dose rates (18, 27, 36 and 45J/cm²) at 37°C and 5% CO₂. Unexposed controls were treated in the same way. After 48 hours post treatment, cell viability (MTT assay), cell function (ALP assay) and cell proliferation rate (BrdU assay) were measured. Live/Dead cell staining was carried out using Acridine Orange/ Propidium Iodide (AO/PI) dyes after 48 hours post light treatment. Statistical analysis was performed using unpaired Student t-test and differences considered significant when p<0.05.

RESULTS:
After 48 hours post light treatment, no significant difference was observed between the unexposed and 405 nm treated samples for up to a dose rate of 36J/cm² in cell viability, function and proliferation rate (fig 1.a). More apoptotic and dead cells were observed for the 45J/cm² exposed samples compared to the 36J/cm² exposed samples (fig. 1.b).

REFERENCES:

ACKNOWLEDGMENTS:
P R is supported by a DTC studentship in Medical Devices from the EPSRC.