Angle of Arrival Estimation for Broadband Signals: A Comparison

MA Alrmah*, S Weiss*, S Redif**, S Lambotharan†, JG McWhirter‡

*Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland
**Electronic & Electrical Engineering Department, European University of Lefke, Lefke, Cyprus
†School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough, UK
‡School of Engineering, University of Cardiff, Cardiff, Wales

{mohamed.alrmah,stephan.weiss}@strath.ac.uk, sredif@eul.edu.tr, s.lambotharan@lboro.ac.uk, mcwhirter@cardiff.ac.uk

Abstract. This paper reviews and compares three different linear algebraic signal subspace techniques for angle of arrival estimation. These include a polynomial matrix approach to multiple signal classification (MUSIC), a parameterised spatial covariance matrix approach, and an auto-focussing based version of coherent signal subspace estimation applied to MUSIC. These approaches are expressed in the framework of polynomial space-time covariance matrices and their polynomial eigenvalue decomposition, thus highlighting their commonalities and differences. Simulation results comparing the accuracy of these broadband angle of arrival estimation methods are presented.

1. Introduction

Powerful narrowband angle of arrival (AoA) estimation methods, such as the multiple signal classification (MUSIC) algorithm [1], are not directly applicable to the broadband case, where time delays rather than phase shift need to be considered in distinguishing between spatially separated sources. Narrowband approximations to the broadband case, such as performing the MUSIC algorithm independently in frequency bins, does not work well if sources are coherent [2] or signal frequencies do not coincide with frequency bins, leading to poor worst-case performance scenarios [3].

Dedicated broadband AoA estimation algorithms include the coherent signal subspace (CSS) method [2,4], which combines covariance matrices at different frequency bins coherently by means of focussing matrices. The focussing matrices, in their simplest form, pre-steer the data such that the signal of interest appears towards broadside, where narrowband methods suffice for estimation. Determining the focussing matrices usually requires a degree of knowledge of the scenario prior to estimation. A recent approach to auto-focussing [5] claims to overcome this problem, and is based on a bin-wise eigenvalue decomposition of covariance matrices.

Further broadband approaches include a recent parameterised spatial covariance (PSC) approach [6,7] which also pre-steers the data to then form a narrowband covariance matrix, and a subspace approach [8] derived from a polynomial eigenvalue decomposition of the space-time covariance matrix [9], which has been employed to generalise MUSIC to the broadband case.

This paper analyses the auto-focussing, parameterised spatial covariance matrix, and polynomial MUSIC approaches in the framework of polynomial space-time covariance matrices and broadband steering vectors. To achieve this, the broadband array model, and resulting steering vectors and covariance matrix are introduced in Sec. 2. Broadband approaches to AoA estimation are outlined in Sec. 3. and, together with Sec. 4., formulated within a polynomial matrix framework. A simulation comparison between the different methods is then performed in Sec. 5., with conclusions being drawn in Sec. 6.

Notation. Matrix and vector quantities are represented by upper- and lowercase bold variables, e.g. A and a. The Hermitian transpose of A is denoted as A^H. Polynomial vectors and matrices are written as $a(z)$ and $A(z)$, with the parahermitian $\hat{A}(z) = A^H(z^{-1})$. A transform pair $a[n]$ and $A(z) = \sum_{n=-\infty}^{\infty} a[n]z^{-n}$ is abbreviated as $a[n] \circ A(z)$.

2. Broadband Steering Vectors and Space-Time Covariance Matrix

Below, we define a steering vector to characterise a source in a broadband scenario in Sec. 2.1, which is used to define a polynomial space-time covariance matrix in Sec. 2.2 and its polynomial eigenvalue decomposition in Sec. 2.3.

2.1 Broadband Steering Vector

Given an array of M-element containing omnidirectional sensors located at positions r_m, $m = 1 \ldots M$, a signal vector $x[n]$,

$$ x[n] = \begin{bmatrix} \delta[n - \Delta t_1] \\ \delta[n - \Delta t_2] \\ \vdots \\ \delta[n - \Delta t_M] \end{bmatrix} \ast s[n] = a[n] \ast s[n] , \quad (1) $$

is collected if the array is illuminated by a source. We assume that the source signal measured at the origin is $s[n]$, with \ast denoting convolution and delays $\Delta t_m = \frac{1}{c} T r_m$, $m = 1 \ldots M$,

1
where c is the propagation speed in the medium, f_s is the sampling rate, \mathbf{k} is the normal vector of the source’s wave front, and \mathbf{k}/c is known as the slowness vector of the source.

The delays $\delta[n - M\tau]$ are generally fractional delays [10], implementable e.g. via sinc functions sampled off their zero-crossing, $\delta[n - M\tau] = \sin(n - M\tau)$, while $\mathbf{a}[n]$ in (1) is referred to as a broadband steering vector. The later, through the normal vector \mathbf{k}’s dependence on azimuth φ and elevation ϑ,

$$\mathbf{k}_{\varphi, \vartheta} = \begin{bmatrix} \cos \varphi \sin \theta \\ \sin \varphi \sin \theta \\ \cos \theta \end{bmatrix}, \quad (2)$$

defines the spatial characteristics of a far-field source, and will also be denoted as $\mathbf{a}_{\varphi, \vartheta}[n]$.

2.2 Polynomial Space-Time Covariance Matrix

In a scenario with L independent far field broadband sources $s_l[n], l = 1 \ldots L$, each characterised by a broadband steering vector $\mathbf{a}[n]$, the signal model becomes

$$\mathbf{x}[n] = \sum_{l=1}^{L} \mathbf{a}[n] \ast s_l[n] + \mathbf{v}[n], \quad (3)$$

with $\mathbf{v}[n]$ representing spatially and temporally uncorrelated noise with covariance $\mathbf{R} = \mathbb{E}\{\mathbf{v}[n]\mathbf{v}^H[n]\}$. To capture information contained in the data vector $\mathbf{x}[n]$ requires a space-time covariance matrix $\mathbf{R}[\tau] = \mathbb{E}\{\mathbf{x}[n]\mathbf{x}^H[n-\tau]\}$ with lag parameter τ. The cross-spectral density matrix $\mathbf{R}(\mathbf{z}) = \mathbb{E}\mathbf{R}[\mathbf{v}]$, $\mathbf{R}(\mathbf{z}) = \sum_{l=1}^{L} \mathbf{a}(\mathbf{z})\mathbf{a}^H(\mathbf{z}^{-1})R_l(z) + \sigma_v^2 \mathbf{I}$

with $R_l(z)$ the power spectral density of the lth source, forms a polynomial matrix.

2.3 Space-Time Covariance Matrix and Polynomial Eigenvalue Decomposition

The power spectral matrix in (4) can be decomposed to yield a polynomial EVD [9]

$$\mathbf{R}(\mathbf{z}) = \mathbf{Q}(\mathbf{z})\Lambda(\mathbf{z})\mathbf{Q}(\mathbf{z}) = \sum_{m=0}^{M-1} \lambda_m(\mathbf{z}) \mathbf{q}_m(\mathbf{z})\mathbf{q}_m^H(\mathbf{z}) \quad (5)$$

with paraunitary $\mathbf{Q}(\mathbf{z})$, i.e. $\mathbf{Q}(\mathbf{z})\mathbf{Q}(\mathbf{z})^H = 1$. The matrix $\Lambda(\mathbf{z})$ is diagonal and contains polynomial eigenvalues $\lambda_m(\mathbf{z})$, which are spectrally majorised, such that

$$\lambda_m(e^{j\Omega}) \geq \lambda_{m+1}(e^{j\Omega}) \quad \forall \Omega, m = 0 \ldots (M - 2). \quad (6)$$

Thresholding the eigenvalues reveals the number of independent broadband sources contributing to $\mathbf{R}(\mathbf{z})$, and permits a distinction between signal-plus-noise and noise only subspaces

$$\mathbf{R}(\mathbf{z}) = [\mathbf{Q}_c(\mathbf{z})\mathbf{Q}_n(\mathbf{z})] \begin{bmatrix} \Lambda_c(\mathbf{z}) & \mathbf{0} \\ \mathbf{0} & \Lambda_n(\mathbf{z}) \end{bmatrix} \begin{bmatrix} \mathbf{Q}_c^H(\mathbf{z}) \\ \mathbf{Q}_n^H(\mathbf{z}) \end{bmatrix} \quad (7)$$

similar to a narrowband EVD [11]. Specifically, the nullspace $\mathbf{Q}_n(\mathbf{z})$ of

$$\mathbf{Q}_n(\mathbf{z}) = \begin{bmatrix} \hat{\mathbf{q}}_{L}(\mathbf{z}) \\ \vdots \\ \hat{\mathbf{q}}_{M-1}(\mathbf{z}) \end{bmatrix} \quad (8)$$

is spanned by vectors $\hat{\mathbf{q}}_L(z)$ which have the same appearance as broadband steering vectors.

3. Broadband Angle of Arrival Estimation

In analysing broadband AoA estimation approaches, we first review the parameterised spatial covariance matrix method [6,7] in Sec. 3.1, followed by an auto-focussing approach [5] to coherent signal subspace-based estimation in Sec. 3.2 and polynomial MUSIC [8] in Sec. 3.3.

3.1 Parameterised Spatial Correlation (PSC) Matrix Method

The idea of the broadband AoA estimation method in [6,7] is based on testing the zero-lag coherence of a spatial correlation matrix calculated from appropriately pre-steered array data. Knowing the array configuration, a broadband steering vector can be defined for a specific AoA represented by azimuth φ and elevation ϑ, and pre-steering can be accomplished by a matched broadband steering vector. The covariance matrix of the pre-steered data is given by

$$\mathbf{R}_{\varphi, \vartheta} = \mathbb{E}\{\mathbf{y}_{\varphi, \vartheta}[n]\mathbf{y}_{\varphi, \vartheta}^H[n]\} \quad (9)$$

$$\mathbf{y}_{\varphi, \vartheta}[n] = \begin{bmatrix} x[n-\Delta\tau_0(\varphi, \vartheta)] \\ \vdots \\ x[n-\Delta\tau_{M-1}(\varphi, \vartheta)] \end{bmatrix} = \Gamma_{\varphi, \vartheta}[n] \ast \mathbf{x}[n] \quad (10)$$

with the delay $\Delta\tau_m(\varphi, \vartheta)$ calculated akin to Sec. 2.1, and the diagonal pre-steering system

$$\Gamma_{\varphi, \vartheta}[n] = \text{diag}\{\delta[n - \Delta\tau_0(\vartheta)] \ldots \delta[n - \Delta\tau_{M-1}(\vartheta)]\}. \quad (11)$$

The proposed method then evaluates the maximum eigenvalue of $\mathbf{R}_{\varphi, \vartheta}$ in (9) for a range of angles $\{\varphi, \theta\}$, with the best match indicated by

$$\{\varphi_{\text{opt}}, \theta_{\text{opt}}\} = \arg\max_{\varphi, \theta} \{\max_{i} \lambda_i(\mathbf{R}_{\varphi, \vartheta})\},$$

where $\lambda_i(\mathbf{R}_{\varphi, \vartheta})$ denotes the ith eigenvalue of $\mathbf{R}_{\varphi, \vartheta}$.

In terms of the space time covariance matrix and broadband steering vectors defined in Sec. 2., the problem can be formulated as

$$\{\varphi_{\text{opt}}, \theta_{\text{opt}}\} = \arg\max_{\varphi, \theta} \{\lambda_{\text{max}}(\mathbf{R}_{\varphi, \vartheta})[0]\} \quad (12)$$

with $\mathbf{R}_{\varphi, \vartheta}[0]$ being the evaluation for lag zero of the space-time covariance matrix $\mathbf{R}_{\varphi, \vartheta}[\tau] = \mathbb{E}\mathbf{R}_{\varphi, \vartheta}(\mathbf{z})$

$$\mathbf{R}_{\varphi, \vartheta}(\mathbf{z}) = \text{diag}\{\mathbf{a}_{\varphi, \vartheta}(\mathbf{z})\} \mathbf{R}(\mathbf{z}) \text{diag}\{\mathbf{a}_{\varphi, \vartheta}(\mathbf{z})\}. \quad (13)$$

of the pre-steered data.
3.2 Coherent Signal Subspace Method

In the coherent signal subspace approach [2,4], covariance matrices are calculated in a number of frequency bins, which are then coherently combined such that their signal subspaces align into one single scalar-valued correlation matrix to which narrowband high resolution AoA techniques such as MUSIC can be applied. The coherence across different frequency bins is created by a frequency-dependent and unitary focussing matrix \(T(e^{j\Omega}) \), such that

\[
R_{\text{coh}} = \sum_{n=0}^{N-1} a_n T(e^{j\Omega_n}) R(e^{j\Omega_n}) T^H(e^{j\Omega_n}),
\]

(14)

where \(a_n \) a weighting for maximum ratio combination of its coherently rotated contributions. The calculation of focussing matrices in the context of coherent signal subspace methods can be based on approximate knowledge of the AoA of the source of interest, or be obtained numerically by a best fit of a rotated \(T(e^{j\Omega_n}) \) to a reference \(T(e^{j\Omega_0}) \), whereby the rotation forms the focussing matrix.

A recent auto-focussing method in [5] calculates, based on a reference frequency \(\Omega_0 \), an EVD of the appropriate frequency-bin covariance matrix \(R(e^{j\Omega_0}) \),

\[
\Lambda_\phi = Q_\phi^H R(e^{j\Omega_0}) Q_\phi .
\]

(15)

Extracting the modal matrix for frequency bin \(k, k = 0 \ldots (K-1) \), the auto-focussing matrix is constructed according to

\[
T(e^{j\Omega_k}) = Q_0 Q_\phi^H (e^{j\Omega_k}) .
\]

(16)

Therefore, the coherent covariance matrix in (14) can be diagonalised by \(Q_0 \) to provide

\[
\Lambda_{\text{coh}} = Q_0^H R_{\text{coh}} Q_0 = \text{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_M\} ,
\]

(17)

with \(\lambda_m, m = 1 \ldots M \) the eigenvalues of \(R_{\text{coh}} \) in (14). If the eigenvalues \(R_{\text{coh}} \) reveal \(R \) linearly independent sources, then the last \(M - R \) columns of \(Q_0 = \left[Q_0, Q_{0,s} \right] \) contained in

\[
Q_{0,s} \in C^{M \times (M-R)}
\]

span the noise-only subspace of the coherent covariance matrix.

The standard narrowband MUSIC algorithm [11] can be applied to \(R_{\text{coh}} \) by probing its noise-only subspace \(Q_{0,s} \) with a set of narrowband steering vectors at the reference frequency \(\Omega_0 \). Based on the transform domain broadband steering vector \(a_{\phi, \theta}(z) \) at the reference frequency \(\Omega_0 \), the MUSIC spectrum for auto-focussing (AF)

\[
S_{AF}(\phi, \theta) = \frac{\|Q_{0,s}^H a_{\phi, \theta}(e^{j\Omega_0})\|^2}{a_{\phi, \theta}^H(e^{j\Omega_0}) Q_{0,s}^H e^{j\Omega_0} a_{\phi, \theta}(e^{j\Omega_0})}
\]

(18)

is obtained.

3.3 Polynomial MUSIC Algorithm

Generalising the concept of the narrowband MUSIC algorithm by using the polynomial EVD in (7), the idea is to probe the broadband noise-only subspace with broadband steering vectors, generalised quantity

\[
\Gamma_{\phi, \theta}(z) = \tilde{a}_{\phi, \theta}(z) Q_{0}(z) \tilde{Q}_{0}(z) a_{\phi, \theta}(z) .
\]

Noting that (3.3) represents a power spectral density rather than a norm measuring the vicinity of \(a_{\phi, \theta}(z) \) to the nullspace of \(Q_{0}(z) \), two versions of the a polynomial MUSIC (P-MUSIC) algorithm were proposed in [8], which are outlined below.

Spatial P-MUSIC. The energy contained in the signal vector \(\tilde{Q}_{0}(z) a_{\phi, \theta}(z) \) is related to the zero lag term \(\gamma_{\phi, \theta}(0) \) of the auto-correlation-type sequence \(\gamma_{\phi, \theta}(\tau) \rightarrow \Gamma_{\phi, \theta}(z) \). This measure is only dependent on the angle of arrival \(\theta \), and collects all energy across the spectrum. Instead of searching for the steering vectors providing minimum energy, the reciprocal

\[
S_{PS}(\phi, \theta) = \frac{1}{\gamma_{\phi, \theta}(0)} .
\]

(19)

is maximised by the angle of arrival characterised by the azimuth/elevation pair \(\{\phi, \theta\} \) of signal sources.

Spatio-Spectral P-MUSIC. With (3.3) describing a power spectral density, spectral clues can be exploited in addition to the spatial information extracted by (19). Therefore in addition to spatial localisation of sources,

\[
S_{PSS}(\phi, \theta, \Omega) = \left(\sum_{\tau=-\infty}^{\infty} \gamma_{\phi, \theta}(\tau) e^{-j\Omega \tau} \right)^{-1}
\]

(20)

can determine over which frequency range sources in the direction defined by the steering vector \(a_{\phi, \theta}(z) \) are active. PSS-MUSIC was introduced in [8], but will be omitted from the comparison below, since the benchmark method only retrieves AoA information.

4. Analytical Comparison

The auto-focussing approach to coherent signal subspace estimation is linked to the polynomial EVD of the space-time covariance matrix in Sec. 4.1, while Secs. 4.2 and 4.3 relate the auto-focussing approximation of coherent signal subspace MUSIC to the polynomial PSS- and PS-MUSIC methods in [8].

4.1 Auto-Focussing Matrices via Polynomial Eigenvalue Decomposition

With the modal matrix \(Q_0 \) in (16) obtained at the reference frequency \(\Omega_0 \) via EVD of \(R(e^{j\Omega_0}) \), the focussing matrix can be formulated as a paraunitary matrix \(T(z) |_{z=e^{j\Omega}} = Q_0 Q_{0,s}^H (e^{j\Omega}) \).
Replacing the summation over frequency bins in (14) by the integration over the Fourier transform (i.e. $K \to \infty$) leads to

$$R_{coh} \approx \frac{1}{2\pi} \int \{ T(z) R(z) \tilde{T}(z) \}_{z=e^{\iota \Omega}} d\Omega \tag{21}$$

$$= Q_0 \frac{1}{2\pi} \int \{ Q(z) R(z) Q(z) \}_{z=e^{\iota \Omega}} d\Omega Q_0^H. \tag{22}$$

Since the paraunitary matrix $Q(z)$ diagonalises $R(z)$, the argument under the integral is the polynomial EVD in (5), resulting in a diagonal matrix of power spectral densities, $\frac{1}{2\pi} \int \Gamma(e^{\iota \Omega}) d\Omega = \Gamma[0]$, where $\Gamma[0]$ is the evaluation of $\Gamma[\tau] \mapsto \Gamma(z)$ for zero lag. Therefore

$$R_{coh} \approx Q_0 \Gamma[0] Q_0^H = Q_0 \begin{bmatrix} \sigma_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_M^2 \end{bmatrix} Q_0^H \tag{23}$$

represents the coherent covariance matrix of the auto-focusing approach in terms of the polynomial EVD of the cross spectral density matrix.

Given that the DFT in (14) is a sufficiently accurate representation of the Fourier transform statement in (21), then (17) and (23) are equivalent with $\Lambda = \Gamma[0]$. Further, the PEVD of the CSD matrix provides a paraunitary $Q(z)$ that leads to an auto-focusing matrix $Q_0 Q(z)$ which is continuous in frequency.

4.2 Relation between Auto-Focusing MUSIC and PSS-MUSIC

Provided that the estimation of the number of linearly independent sources, R, is the same for the auto-focusing approach of CSS and from (23) of the polynomial approach, then with Q_0 being the evaluation of the paraunitary $Q(z)$ at the reference frequency Ω_0, i.e. $Q_0 = Q(z)_{z=e^{\iota \Omega_0}}$, it follows that

$$S_{CSS}(\varphi, \vartheta) = S_{PSS}(\varphi, \vartheta, e^{\iota \Omega_0})_{|\Omega=\Omega_0}. \tag{24}$$

Therefore, the auto-focusing approach to coherent signal subspace MUSIC estimation is equivalent to evaluating the polynomial spatio-spectral MUSIC spectrum at the reference frequency Ω_0.

To obtain the same spatio-spectral characterisation of the array data as provided by PSS-MUSIC with the CSS approach, a sequence of different modal matrices Q_0 at different reference frequencies Ω_0 could be calculated, for all of which (18) is evaluated.

4.3 Relation between Auto-Focusing MUSIC and PSS-MUSIC

Noting that in (19),

$$\gamma_{\varphi, \vartheta}[0] = \frac{1}{2\pi} \int_{0}^{2\pi} \Gamma_{\varphi, \vartheta}(e^{\iota \Omega}) d\Omega, \tag{25}$$

if the integral can be approximated by a sum over discrete frequency bins, i.e.

$$\gamma \approx \frac{1}{K} \sum_{k=0}^{K-1} a_{\varphi, \vartheta}^H(e^{\iota \Omega}) Q_k^H(e^{\iota \Omega}) Q_k^H(e^{\iota \Omega}) a_{\varphi, \vartheta}(e^{\iota \Omega}), \tag{26}$$

then (26) is the summation over the denominator terms of (18) for all possible reference frequencies Ω_k with $\Omega_k = \frac{2\pi}{K} k$, $k = 0 \ldots (K-1)$. The PS-MUSIC denominator in the above approximation also appears similar to the incoherent MUSIC approach stated in [12]; however, here the paraunitary matrix $Q(z)$ that feeds into (26) has been demonstrated in (23) to coherent combine the spatio-temporal covariance matrix in the auto-focusing sense.

5. Simulations and Numerical Results

Below, we illustrate the analysis of the above broadband AoA estimation algorithms in two examples.

5.1 Example 1 — Single Source Case

To highlight the connection between the auto-focusing approach and PSS-MUSIC, we first consider a simple toy problem with a single source in a noise-free environment, where the space-time covariance matrix and its ideal decomposition are known. Here, a single broadband source emits an uncorrelated Gaussian signal, which is captured by an $M = 4$ element linear array with equispaced sensors that sample critically in both time and space. The broadband steering vector of this source is

$$a_1(z) = \frac{1}{\sqrt{M}} [1 \ldots z^{-M+1}]$$

such that the space-time covariance matrix is given by

$$R_1(z) = \begin{bmatrix} \frac{1}{\sqrt{M}} & \ldots & \frac{1}{\sqrt{M}} \\ \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{M}} & \ldots & \frac{1}{\sqrt{M}} \end{bmatrix}. \tag{28}$$

Because $R_1(z)$ is rank one, a manifold of diagonalising polynomial decompositions exists, with one possibility being

$$Q(z) = \text{diag} \{ 1 \ldots z^{-M+1} \} T_{DFT}, \tag{29}$$

where T_{DFT} is an M-point DFT matrix normalised by \sqrt{M} such that T_{DFT} is unitary. Based on PSS-MUSIC in [22] using a sampled sinc function, truncated to order 200, to approximate broadband steering vectors, the spectrum in Fig. 1 emerges. Normalised to a maximum value of unity, the AoA of the end-fire source is identified. In line with broadband arrays, at lower frequencies the fixed aperture degrades the spatial resolution, with no ability to discern sources at DC.

For the auto-focusing approach, at a given reference frequency Ω_0, $R_{coh, \Omega_0} = R(z)_{z=e^{\iota \Omega_0}}$ and $\Lambda_{coh, \Omega_0} = \text{diag} \{ 1, 0 \ldots 0 \}$.

\[4\]
for the trivial broadband steering vector towards broadside, MUSIC can always be accurately represented. Note that narrowband steering vectors required for CSS-MUSIC can always be temporally uncorrelated with unit variance, its broadband steering vector is

$$a_{b} (z) = \frac{1}{\sqrt{M}} [1 \ldots 1]^T,$$

leading to a non-polynomial space-time covariance matrix with unity for all entries. With a relative signal strength of 0dB for each source, additional i.i.d. noise contaminates all sensors at a variance of -20dB, giving an SINR of -23dB. Therefore the overall space-time covariance is

$$R_{2}(z) = R_{1}(z) + \frac{1}{M} \begin{bmatrix} 1 & 1 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & 1 & \ldots & 1 \end{bmatrix} + \sigma_{z}^{2}I,$$

with no obvious PEVD as for $R_{1}(z)$ in (29).

The PSS-MUSIC spectrum based on an SBR2-approximation of the PEVD is shown in Fig. 4, which offers a similar quality to the AF-MUSIC spectrum scanned for different reference frequencies in Fig. 5. The degradation of the PSS-MUSIC spectrum’s surface compared to the AF-approach, particularly at peak values, is due to the SBR2 algorithm’s approximate nature.
The spatial-only spectra for the dual source case in Fig. 6 illustrate that PSC is only able to resolve a single source, while AF- and PS-MUSIC approaches correctly detect the sources, with AF offering a higher resolution due to the SBR2-approximation of the ideal PEVD for the PS-MUSIC case.

6. Conclusions

Three broadband angle of arrival estimation algorithms have been reviewed and analysed, including a parameterised spatial covariance matrix approach, which by definition can only resolve the strongest source, an auto-focussing approximation of the coherent signal subspace method, where the broadband problem is transformed to yield a narrowband one, and a polynomial MUSIC approach. The algorithms have been cast in the framework of broadband steering vectors and broadband space-time covariance matrices, and the links in particular between the auto-focussing approach and polynomial MUSIC have been stated, which generally rely on the transition from a discrete evaluation of frequency bins to a continuous spectrum. In simulations, AF- and polynomial MUSIC approaches have proven very similar, with differences arising from the iterative approximation of the polynomial EVD. However, a

natural advantage of the polynomial MUSIC approach is its potential resolution of both angle of arrival and frequency.

References

Arlmah, Weiss, Redif, Lambotharan, McWhirter