that the treatment with aspirin and 5-FU did not cause toxicity after 48 h exposure which may explain the lack of SSAT response to these drugs.

References


P034
Insulin-like growth factor binding protein-5 as a biomarker for the detection of early liver disease
Emma M. Large 1,*, Anne Pryde 3, John N. Plevris 3, David J. Flint 2, M. Helen Grant 1
1 Bioengineering Unit, University of Strathclyde, Glasgow G4 0NW, United Kingdom
2 SIBBS, University of Strathclyde, Glasgow G4 0NW, United Kingdom
3 Department of Hepatology, University of Edinburgh, United Kingdom
E-mail address: e.large@strath.ac.uk (E.M. Large).

A steady upward trend in the mortality rates from cirrhosis in the UK has been observed in recent years and in particular in Scotland. The liver has a huge regenerative capacity but early diagnosis is essential. Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in the developed world mirroring the global epidemic of Type 2 diabetes and obesity.

This work aims to determine if Insulin-like growth factor binding protein-5 (IGFBP-5) would be a suitable biomarker for the detection of NAFLD. It has already been shown to be upregulated in skin fibrosis (Yasuoka et al., 2006a) and in fibrosis of the lung (Yasuoka et al., 2006b). Also, its expression enhances the survival of hepatic stellate cells and myofibroblasts and the expression of profibrotic genes (Sokolovic et al., 2010).

The University of Edinburgh have developed a model of NAFLD in vitro using C3A cells (Filippi et al., 2004), a clonal derivative of hepatic stellate cells and myofibroblasts and the expression of profibrotic genes (Yasuoka et al., 2006a) and in fibrosis of the lung (Yasuoka et al., 2006b). Also, its expression enhances the survival of hepatic stellate cells and myofibroblasts and the expression of profibrotic genes (Sokolovic et al., 2010).


P035
Acute depletion of the prion protein may abrogate Aβ oligomer toxicity
Helios E. Radford *, Nick C. Verity, Maria Guerra Martin, Giovanna R. Malulli
MRC Toxicology Unit, Leicester LE1 9HN, UK
E-mail address: her11@le.ac.uk (H.E. Radford).

Amyloid-beta1-42 (Aβ) oligomers bind to the prion protein (PrP) with very high affinity (Balducci et al., 2010; Lauren et al., 2009). This interaction has been shown to mediate the toxic effects of Aβ on LTP and synaptic function in vitro (Lauren et al., 2009), and on certain tests of memory in vivo (Gimbel et al., 2010). However, conflicting reports exist, where the effects of Aβ have been found to be independent of PrP (Balducci et al., 2010; Callella et al., 2010; Kessels et al., 2010). If PrP does mediate Aβ toxicity, it becomes an attractive new target for therapy in AD. The reasons for the contradictory findings are unclear, but in each case, despite some methodological differences, the role of PrP has been assessed by comparing Aβ toxicity in wild-type and embryonic PrP-null (PrP0/0) mice. The aim of this study was to examine the role of PrP in mediating Aβ effects using two experimental paradigms. First, in PrP0/0 mice as above, and second, using RNAi for acute knockdown of PrP, to model the effects of a PrP-targeted treatment.

We measured dendritic spine loss induced by injection of synthetic Aβ oligomers (1 μM) into the hippocampus, as this is associated with both memory deficits and loss of LTP. In wild-type (WT) and PrP0/0 mice, we found that Aβ-mediated spine loss was independent of PrP in hippocampal slices, and also in vivo, after injection of Aβ. Spine density was equally reduced by Aβ in wild-type and embryonic PrP-null (PrP0/0) mice. The aim of this study was to examine the role of PrP in mediating Aβ effects using two experimental paradigms. First, in PrP0/0 mice as above, and second, using RNAi for acute knockdown of PrP, to model the effects of a PrP-targeted treatment.

We measured dendritic spine loss induced by injection of synthetic Aβ oligomers (1 μM) into the hippocampus, as this is associated with both memory deficits and loss of LTP. In wild-type (WT) and PrP0/0 mice, we found that Aβ-mediated spine loss was independent of PrP in hippocampal slices, and also in vivo, after injection of Aβ. Spine density was equally reduced by Aβ in wild-type and embryonic PrP-null (PrP0/0) mice. The aim of this study was to examine the role of PrP in mediating Aβ effects using two experimental paradigms. First, in PrP0/0 mice as above, and second, using RNAi for acute knockdown of PrP, to model the effects of a PrP-targeted treatment.

We measured dendritic spine loss induced by injection of synthetic Aβ oligomers (1 μM) into the hippocampus, as this is associated with both memory deficits and loss of LTP. In wild-type (WT) and PrP0/0 mice, we found that Aβ-mediated spine loss was independent of PrP in hippocampal slices, and also in vivo, after injection of Aβ. Spine density was equally reduced by Aβ in wild-type and embryonic PrP-null (PrP0/0) mice. The aim of this study was to examine the role of PrP in mediating Aβ effects using two experimental paradigms. First, in PrP0/0 mice as above, and second, using RNAi for acute knockdown of PrP, to model the effects of a PrP-targeted treatment.