Fluorescence lifetime imaging microscopy (FLIM) has become a valuable tool in diverse disciplines. This thesis presents deep learning (DL) approaches to addressing two major challenges in FLIM: slow and complex data analysis and the high photon budget for precisely quantifying the fluorescence lifetimes. DL's ability to extract high-dimensional features from data has revolutionized optical and biomedical imaging analysis. This thesis contributes several novel DL FLIM algorithms that significantly expand FLIM's scope.Firstly, a hardware-friendly pixel-wise DL algorithm is proposed for fast FLIM data analysis. The algorithm has a simple architecture yet can effectively resolve multi-exponential decay models. The calculation speed and accuracy outperform conventional methods significantly.Secondly, a DL algorithm is proposed to improve FLIM image spatial resolution, obtaining high-resolution (HR) fluorescence lifetime images from low-resolution (LR) images. A computational framework is developed to generate large-scale semi-synthetic FLIM datasets to address the challenge of the lack of sufficient high-quality FLIM datasets. This algorithm offers a practical approach to obtaining HR FLIM images quickly for FLIM systems.Thirdly, a DL algorithm is developed to analyze FLIM images with only a few photons per pixel, named Few-Photon Fluorescence Lifetime Imaging (FPFLI) algorithm. FPFLI uses spatial correlation and intensity information to robustly estimate the fluorescence lifetime images, pushing this photon budget to a record-low level of only a few photons per pixel.Finally, a time-resolved flow cytometry (TRFC) system is developed by integrating an advanced CMOS single-photon avalanche diode (SPAD) array and a DL processor. The SPAD array, using a parallel light detection scheme, shows an excellent photon-counting throughput. A quantized convolutional neural network (QCNN) algorithm is designed and implemented on a field-programmable gate array as an embedded processor. The processor resolves fluorescence lifetimes against disturbing noise, showing unparalleled high accuracy, fast analysis speed, and low power consumption.
Date of Award | 8 Jun 2023 |
---|
Original language | English |
---|
Awarding Institution | - University Of Strathclyde
|
---|
Sponsors | University of Strathclyde |
---|
Supervisor | David Li (Supervisor) & Yu Chen (Supervisor) |
---|