Developing and applying the concept of Value of Information to optimise data collection strategies for seismic hazard assessment

  • Haifa Tebib

Student thesis: Doctoral Thesis

Abstract

In seismic hazard assessments the importance of knowing different input parameters accurately depends on their weight within the hazard model. Many aspects of such assessments require inputs based on knowledge and data from experts. When it comes to decisions about data collection, facility owners and seismic hazard analysts need to balance the possible added value brought by acquiring new data against the budget and time available for its collection. In other words, they need to answer the question “Is it worth paying to obtain this information?” Assessing the value of information (VoI) before data collection should lead to optimising the time and money that one is willing to invest. This thesis presents a method that combines available data and expert judgment to facilitate the decision-making process within the site-response component of seismic hazard assessments. The approach integrates influence diagrams and decision trees to map the causal-relationships between input parameters in site-response analysis, and Bayesian inference to update the model when new evidence is considered. Here, the VoI is assessed for univariate, bivariate and multivariate uncertain parameters to infer an optimal seismic design for typical buildings and critical facilities. For the first time in the field of seismic hazard assessment and earthquake engineering, a framework is developed to integrate prior knowledge, ground investigation techniques characteristics and design safety requirements. The consistent findings across different applications show that VoI is highly sensitive to prior probabilities and to the accuracy of the test to be performed. This highlights the importance of defining those from available data as well as only considering tests that are suitable for our needs and budget. The developed VoI framework constitutes a useful decision-making tool for hazard analysts and facility owners, enabling not only the prioritisation of data collection for key input parameters and the identification of optimal tests, but also the justification of the associated decisions. This approach can enhance the accuracy and reliability of seismic hazard assessments, leading to more effective risk management strategies.
Date of Award29 Sept 2023
Original languageEnglish
Awarding Institution
  • University Of Strathclyde
SponsorsUniversity of Strathclyde
SupervisorJohn Douglas (Supervisor) & Jen Roberts (Supervisor)

Cite this

'