Abstract
For a word w in an alphabet Γ, the alternation word digraph Alt(w), a certain directed acyclic graph associated with w, is presented as a means to analyze the free spectrum of the Perkinsmonoid B½. Let ( f B½ n ) denote the free spectrum of B½, let an be the number of distinct alternation word digraphs on words whose alphabet is contained in {x1, . . . , xn}, and let pn denote the number of distinct labeled posets on {1, . . . , n}. The word problem for the Perkins semigroup B½ is solved here in terms of alternation word digraphs: Roughly speaking, two words u and v are equivalent over B½ if and only if certain alternation graphs associated with u and v are equal. This solution provides the main application, the bounds: pn ≤ an ≤ f B½ n ≤ 2na2 2n. A result of the second author in a companion paper states that (log an) ∈ O(n3), from which it follows that (log f B½ n ) ∈ O(n3) as well. Alternation word digraphs are of independent interest combinatorially. It is shown here that the computational complexity problem that has as instance {u, v} where u, v are words of finite length, and question “Is Alt(u) = Alt(v)?”, is co-NP-complete. Additionally, alternation word digraphs are acyclic, and certain of them are natural extensions of posets; each realizer of a finite poset determines an extension by an alternation word digraph.
Original language | English |
---|---|
Pages (from-to) | 177-194 |
Number of pages | 18 |
Journal | Order |
Volume | 25 |
Issue number | 3 |
Early online date | 30 Aug 2008 |
DOIs | |
Publication status | Published - Aug 2008 |
Keywords
- directed acyclic graph
- partially order set
- poset
- Perkins semigroup
- free semigroup
- word problem
- computational complexity