Whisky tasting using a bimetallic nanoplasmonic tongue

Gerard Macias, Justin Ryan Sperling, William J. Peveler, Glenn A Burley, Steven L. Neale, Alasdair W. Clark

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Metallic nanostructures are ideal candidates for optical tongue devices thanks to their chemical stability, the sensitivity of their plasmonic resonance to environmental changes, and their ease of chemical-functionalization. Here, we describe a reusable optical tongue comprising multiplexed gold and aluminum nano-arrays: a bimetallic device which produces two distinct resonance peaks for each sensing region. Through specific modification of these plasmonic arrays with orthogonal surface chemistries, we demonstrate that a dual-resonance device allows us to halve sensor sizes and data-acquisition times when compared to single-resonance, monometallic devices. We applied our bimetallic tongue to differentiate off-the-shelf whiskies with >99.7% accuracy by means of linear discriminant analysis (LDA). This advance in device miniaturization, functionalization, and multiplexed readout indicates nanoplasmonic tongues will have future applications in chemical mixture identification in applications where portability, reusability, and measurement speed are key.

Original languageEnglish
Pages (from-to)15216-15223
Number of pages8
JournalNanoscale
Volume11
Issue number32
Early online date3 Jul 2019
DOIs
Publication statusPublished - 28 Aug 2019

    Fingerprint

Keywords

  • metallic nanostructures
  • optical tongue
  • bimetallic tongue
  • whisky

Cite this

Macias, G., Sperling, J. R., Peveler, W. J., Burley, G. A., Neale, S. L., & Clark, A. W. (2019). Whisky tasting using a bimetallic nanoplasmonic tongue. Nanoscale, 11(32), 15216-15223. https://doi.org/10.1039/C9NR04583J