What's wrong with the murals at the Mogao Grottoes: a near-infrared hyperspectral imaging method

Meijun Sun, Dong Zhang, Zheng Wang*, Jinchang Ren, Bolong Chai, Jizhou Sun

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)
111 Downloads (Pure)

Abstract

Although a significant amount of work has been performed to preserve the ancient murals in the Mogao Grottoes by Dunhuang Cultural Research, non-contact methods need to be developed to effectively evaluate the degree of flaking of the murals. In this study, we propose to evaluate the flaking by automatically analyzing hyperspectral images that were scanned at the site. Murals with various degrees of flaking were scanned in the 126th cave using a near-infrared (NIR) hyperspectral camera with a spectral range of approximately 900 to 1700 nm. The regions of interest (ROIs) of the murals were manually labeled and grouped into four levels: normal, slight, moderate, and severe. The average spectral data from each ROI and its group label were used to train our classification model. To predict the degree of flaking, we adopted four algorithms: deep belief networks (DBNs), partial least squares regression (PLSR), principal component analysis with a support vector machine (PCA + SVM) and principal component analysis with an artificial neural network (PCA + ANN). The experimental results show the effectiveness of our method. In particular, better results are obtained using DBNs when the training data contain a significant amount of striping noise.

Original languageEnglish
Article number14371
Number of pages10
JournalScientific Reports
Volume5
DOIs
Publication statusPublished - 23 Sept 2015

Keywords

  • hyperspectral imaging
  • ancient murals

Fingerprint

Dive into the research topics of 'What's wrong with the murals at the Mogao Grottoes: a near-infrared hyperspectral imaging method'. Together they form a unique fingerprint.

Cite this