Water level forecasting using spatiotemporal attention-based long short-term memory network

Fahima Noor, Sanaulla Haq, Mohammed Rakib, Tarik Ahmed, Zeeshan Jamal, Zakaria Shams Siam, Rubyat Tasnuva Hasan, Mohammed Sarfaraz Gani Adnan*, Ashraf Dewan, Rashedur M. Rahman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)
13 Downloads (Pure)

Abstract

Bangladesh is in the floodplains of the Ganges, Brahmaputra, and Meghna River delta, crisscrossed by an intricate web of rivers. Although the country is highly prone to flooding, the use of state-of-the-art deep learning models in predicting river water levels to aid flood forecasting is underexplored. Deep learning and attention-based models have shown high potential for accurately forecasting floods over space and time. The present study aims to develop a long short-term memory (LSTM) network and its attention-based architectures to predict flood water levels in the rivers of Bangladesh. The models developed in this study incorporated gauge-based water level data over 7 days for flood prediction at Dhaka and Sylhet stations. This study developed five models: artificial neural network (ANN), LSTM, spatial attention LSTM (SALSTM), temporal attention LSTM (TALSTM), and spatiotemporal attention LSTM (STALSTM). The multiple imputation by chained equations (MICE) method was applied to address missing data in the time series analysis. The results showed that the use of both spatial and temporal attention together increases the predictive performance of the LSTM model, which outperforms other attention-based LSTM models. The STALSTM-based flood forecasting system, developed in this study, could inform flood management plans to accurately predict floods in Bangladesh and elsewhere.

Original languageEnglish
Article number612
Number of pages21
JournalWater (Switzerland)
Volume14
Issue number4
DOIs
Publication statusPublished - 17 Feb 2022

Keywords

  • attention mechanism LSTM
  • deep learning
  • flood forecasting
  • time series
  • water-level prediction

Fingerprint

Dive into the research topics of 'Water level forecasting using spatiotemporal attention-based long short-term memory network'. Together they form a unique fingerprint.

Cite this