Visualisation of total knee replacement rehabilitation exercises in the home

Mobolaji Ayoade, M. Almustafa, Myrto-Despoina Dounavi, Angela Deakin, Philip Rowe, Tracey Howe, Niall Munro, C. Kellett, Kamal Deep, Lynne Baillie

Research output: Contribution to conferencePaperpeer-review


Postoperative rehabilitation after total knee replacement (TKR) within the UK usually takes place within the home. Sometimes patients find it difficult to monitor the quality and quantity of their exercises, and it is important to achieve as good a range of movement as possible in the first few weeks. This work aimed to engage users in their rehabilitation through an innovative way of capturing and then visualising movement data.

Primary unilateral TKR patients were recruited to a single centre randomised controlled pilot trial. The control group underwent normal post-operative rehabilitation with an exercise booklet and DVD. The intervention group were provided with the visualisation system to use in their homes. The system consisted of two wireless sensors, a remote control, bespoke software and a laptop. The patient wore one sensor above the knee and one below while performing the rehabilitation exercises. A colour coded interactive traffic light system and stickman figure was used to indicate the quality of movement and the number of repetitions of each exercise. The system tracked weekly progress (both quality and quantity of exercises completed) and allowed arthroplasty practitioners to hold video calls with patients. The outcome measures for the study were gait speed, timed up and go test, knee range of motion and Oxford Knee Score. These were collected immediately prior to discharge (baseline) and at six weeks follow up. As this was a pilot study only descriptive statistics (mean ± SD) were used.

Twenty-four patients were recruited. Of these six withdrew and two were excluded (one readmit and one referral for outpatient physiotherapy). Seven control and nine intervention patient completed the study. The mean age was 69 years (47 to 85), 6 left and 10 right knees, 10 females and 6 males. All intervention patients who completed the study found the visualisation system and video call easy to use. There were similar improvements in both groups from baseline to six-week follow-up for the gait speed (Control = 0.6 m/s ± 0.2, Intervention = 0.6 m/s ± 0.3), the timed up and go test (Control = 16 s ± 12, Intervention = 16 s ± 12) and for the Oxford Knee Score (Control = 17 ± 8, Intervention = 20 ± 10). However, the intervention group had larger improvements in knee extension (Control = 1° ± 3, Intervention = 6° ± 5) and knee flexion (Control = 15° ± 14, Intervention = 22° ± 12).

This pilot study shows that a home-based visualisation system using wireless sensors can be introduced into patients’ post-operative rehabilitation and can also be used to facilitate remote assessment sessions with trained professionals. This approach is generally acceptable and could potentially improve patients’ knee range of motion, most especially in reducing knee extension lag.
Original languageEnglish
Publication statusPublished - 21 Nov 2013
EventCAOS UK conference 2013 - London, United Kingdom
Duration: 21 Nov 201322 Nov 2013


ConferenceCAOS UK conference 2013
Country/TerritoryUnited Kingdom


  • Postoperative rehabilitation
  • total knee replacement
  • TKR
  • home-based visualisation systems


Dive into the research topics of 'Visualisation of total knee replacement rehabilitation exercises in the home'. Together they form a unique fingerprint.

Cite this