Velocity slip in microscale cylindrical Couette flow: the Langmuir model

R.S. Myong, Jason Reese, Robert W. Barber, David Emerson

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)


The velocity slip on the solid surfaces of microscale cylindrical Couette flow is investigated using the Langmuir adsorption model for the gas-surface molecular interaction. The accommodation coefficient in the Maxwell model, which is a free parameter based on the concept of diffusive reflection, is replaced by a physical parameter of heat adsorption in the Langmuir model. The phenomenon of velocity inversion is then clearly explained by introducing a velocity polar on the hodograph plane. It is also shown that the quantity used to determine the momentum slip in a concentric cylindrical geometry should be based upon the angular velocity, not the velocity itself. Finally, and despite their totally independent considerations of the gas-surface molecular interaction, the Maxwell and Langmuir slip models are shown to be in qualitative agreement with direct simulation Monte Carlo data in capturing the general features of the flow field.
Original languageEnglish
Pages (from-to)087105
JournalPhysics of Fluids
Issue number8
Publication statusPublished - 9 Aug 2005


  • slip flow
  • microfluidics
  • couette flow
  • adsorption
  • fluid dynamics
  • mechanical engineering


Dive into the research topics of 'Velocity slip in microscale cylindrical Couette flow: the Langmuir model'. Together they form a unique fingerprint.

Cite this