Validity of measuring the sit to walk movement with an inertial sensor

Andrew Kerr, Danny Rafferty, Philippa Dall, Jennifer Muhaidat

    Research output: Contribution to journalArticle

    Abstract

    Moving from sitting to walking (STW) is a functional movement that is sufficiently demanding to reveal early mobility problems that may be masked in other tests (Kerr et al., 2007). Research to date has confirmed the inherent difficulty of the STW movement (Magnan et al., 1996); however, the technology used is limited to Moving from sitting to walking (STW) is a functional movement that is sufficiently demanding to reveal early mobility problems that may be masked in other tests (Kerr et al., 2007). Research to date has confirmed the inherent difficulty of the STW movement (Magnan et al., 1996); however, the technology used is limited to laboratory settings. Accelerometers may provide a suitable alternative.
    This study aimed to test the concurrent validity of an accelerometer for measuring temporal parameters of the STW movement. Following ethical approval, 15 healthy participants were instructed to stand up and walk from a chair while a motion analysis system tracked the 3D trajectory of reflective markers located on anatomical landmarks on the trunk and lower limbs. Concurrently, the acceleration signals of both thighs were recorded by two tri-axial accelerometers (DelSys, Boston, MA, USA). Participants performed three STW movements at self-selected speeds: slow, normal and fast. Time events for the STW movement (seat off, swing off and swing down) were identified from changes in the marker trajectories, as described in the literature, and points of inflection in the acceleration signals.Across all speeds, there was an absolute difference of 0.064 seconds ± 0.05 seconds for seat off, 0.072 ± 0.063 seconds for swing off and 0.063 seconds ± 0.039 seconds for swing down. Agreement for the events was excellent with intraclass correlation coefficient values between 0.96 and 0.99. Agreement for the whole movement duration was 0.99. This study demonstrated excellent agreement between a motion analysis system and inertial sensors for recording time events during the STW movement, suggesting clear potential for this technique.
    Original languageEnglish
    Number of pages1
    JournalPhysiotherapy Research International
    DOIs
    Publication statusPublished - 2012

    Fingerprint

    Walking
    Technology
    Thigh
    Research
    Lower Extremity
    Healthy Volunteers

    Keywords

    • sit to walk movement
    • inertial sensor

    Cite this

    @article{846a49aba8cf41f29130533fba09167b,
    title = "Validity of measuring the sit to walk movement with an inertial sensor",
    abstract = "Moving from sitting to walking (STW) is a functional movement that is sufficiently demanding to reveal early mobility problems that may be masked in other tests (Kerr et al., 2007). Research to date has confirmed the inherent difficulty of the STW movement (Magnan et al., 1996); however, the technology used is limited to Moving from sitting to walking (STW) is a functional movement that is sufficiently demanding to reveal early mobility problems that may be masked in other tests (Kerr et al., 2007). Research to date has confirmed the inherent difficulty of the STW movement (Magnan et al., 1996); however, the technology used is limited to laboratory settings. Accelerometers may provide a suitable alternative.This study aimed to test the concurrent validity of an accelerometer for measuring temporal parameters of the STW movement. Following ethical approval, 15 healthy participants were instructed to stand up and walk from a chair while a motion analysis system tracked the 3D trajectory of reflective markers located on anatomical landmarks on the trunk and lower limbs. Concurrently, the acceleration signals of both thighs were recorded by two tri-axial accelerometers (DelSys, Boston, MA, USA). Participants performed three STW movements at self-selected speeds: slow, normal and fast. Time events for the STW movement (seat off, swing off and swing down) were identified from changes in the marker trajectories, as described in the literature, and points of inflection in the acceleration signals.Across all speeds, there was an absolute difference of 0.064 seconds ± 0.05 seconds for seat off, 0.072 ± 0.063 seconds for swing off and 0.063 seconds ± 0.039 seconds for swing down. Agreement for the events was excellent with intraclass correlation coefficient values between 0.96 and 0.99. Agreement for the whole movement duration was 0.99. This study demonstrated excellent agreement between a motion analysis system and inertial sensors for recording time events during the STW movement, suggesting clear potential for this technique.",
    keywords = "sit to walk movement, inertial sensor",
    author = "Andrew Kerr and Danny Rafferty and Philippa Dall and Jennifer Muhaidat",
    year = "2012",
    doi = "10.1002/pri.523",
    language = "English",
    journal = "Physiotherapy Research International",
    issn = "1358-2267",

    }

    Validity of measuring the sit to walk movement with an inertial sensor. / Kerr, Andrew; Rafferty, Danny; Dall, Philippa; Muhaidat, Jennifer.

    In: Physiotherapy Research International , 2012.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Validity of measuring the sit to walk movement with an inertial sensor

    AU - Kerr, Andrew

    AU - Rafferty, Danny

    AU - Dall, Philippa

    AU - Muhaidat, Jennifer

    PY - 2012

    Y1 - 2012

    N2 - Moving from sitting to walking (STW) is a functional movement that is sufficiently demanding to reveal early mobility problems that may be masked in other tests (Kerr et al., 2007). Research to date has confirmed the inherent difficulty of the STW movement (Magnan et al., 1996); however, the technology used is limited to Moving from sitting to walking (STW) is a functional movement that is sufficiently demanding to reveal early mobility problems that may be masked in other tests (Kerr et al., 2007). Research to date has confirmed the inherent difficulty of the STW movement (Magnan et al., 1996); however, the technology used is limited to laboratory settings. Accelerometers may provide a suitable alternative.This study aimed to test the concurrent validity of an accelerometer for measuring temporal parameters of the STW movement. Following ethical approval, 15 healthy participants were instructed to stand up and walk from a chair while a motion analysis system tracked the 3D trajectory of reflective markers located on anatomical landmarks on the trunk and lower limbs. Concurrently, the acceleration signals of both thighs were recorded by two tri-axial accelerometers (DelSys, Boston, MA, USA). Participants performed three STW movements at self-selected speeds: slow, normal and fast. Time events for the STW movement (seat off, swing off and swing down) were identified from changes in the marker trajectories, as described in the literature, and points of inflection in the acceleration signals.Across all speeds, there was an absolute difference of 0.064 seconds ± 0.05 seconds for seat off, 0.072 ± 0.063 seconds for swing off and 0.063 seconds ± 0.039 seconds for swing down. Agreement for the events was excellent with intraclass correlation coefficient values between 0.96 and 0.99. Agreement for the whole movement duration was 0.99. This study demonstrated excellent agreement between a motion analysis system and inertial sensors for recording time events during the STW movement, suggesting clear potential for this technique.

    AB - Moving from sitting to walking (STW) is a functional movement that is sufficiently demanding to reveal early mobility problems that may be masked in other tests (Kerr et al., 2007). Research to date has confirmed the inherent difficulty of the STW movement (Magnan et al., 1996); however, the technology used is limited to Moving from sitting to walking (STW) is a functional movement that is sufficiently demanding to reveal early mobility problems that may be masked in other tests (Kerr et al., 2007). Research to date has confirmed the inherent difficulty of the STW movement (Magnan et al., 1996); however, the technology used is limited to laboratory settings. Accelerometers may provide a suitable alternative.This study aimed to test the concurrent validity of an accelerometer for measuring temporal parameters of the STW movement. Following ethical approval, 15 healthy participants were instructed to stand up and walk from a chair while a motion analysis system tracked the 3D trajectory of reflective markers located on anatomical landmarks on the trunk and lower limbs. Concurrently, the acceleration signals of both thighs were recorded by two tri-axial accelerometers (DelSys, Boston, MA, USA). Participants performed three STW movements at self-selected speeds: slow, normal and fast. Time events for the STW movement (seat off, swing off and swing down) were identified from changes in the marker trajectories, as described in the literature, and points of inflection in the acceleration signals.Across all speeds, there was an absolute difference of 0.064 seconds ± 0.05 seconds for seat off, 0.072 ± 0.063 seconds for swing off and 0.063 seconds ± 0.039 seconds for swing down. Agreement for the events was excellent with intraclass correlation coefficient values between 0.96 and 0.99. Agreement for the whole movement duration was 0.99. This study demonstrated excellent agreement between a motion analysis system and inertial sensors for recording time events during the STW movement, suggesting clear potential for this technique.

    KW - sit to walk movement

    KW - inertial sensor

    UR - http://www.scopus.com/inward/record.url?scp=84855486280&partnerID=8YFLogxK

    U2 - 10.1002/pri.523

    DO - 10.1002/pri.523

    M3 - Article

    JO - Physiotherapy Research International

    JF - Physiotherapy Research International

    SN - 1358-2267

    ER -