Abstract
Two-photon fluorescence microscopy was introduced as a tool to assess enzyme accessibility and to quantify enzyme reactions rates on solid supports. Enzyme catalysis on substrates that are linked to solid supports (solid phase biocatalysis) is becoming increasingly important as polymer supported synthesis1 and high throughput screening methods2 are developed. Despite successes both in synthesis and analysis, fundamental understanding of the kinetics and thermodynamics of such enzyme catalysed reactions is limited. It is increasingly clear that the fundamental rules for solid phase chemistry are different from those of solution phase chemistry,3 and the same can be expected for solid phase biocatalysis. These rules need to be better understood in order to exploit the advantages of solid phase reactions in full. Hence, we recently initiated research efforts aimed at a better fundamental understanding of solid phase biocatalysis.
Original language | English |
---|---|
Pages (from-to) | 2790-2791 |
Number of pages | 2 |
Journal | Chemical Communications (London) |
Volume | 2003 |
Issue number | 23 |
Early online date | 13 Oct 2003 |
DOIs | |
Publication status | Published - 13 Oct 2003 |
Keywords
- solid-support
- peptide-synthesis
- confocal raman
- pega supports
- chemistry
- kinetics
- library