Unsteady interactions among multiple ships with free-surface effects

Zhi-Ming Yuan, Ronald W. Yeung

Research output: Contribution to conferencePaper

Abstract

Ships often have to pass each other in proximity inharbor area and waterways in dense shipping trafficenvironment. Hydrodynamic interaction occurs whena ship is overtaking (or being overtaken) orencountering other ships. Such an interactive effectcould be magnified in confined waterways, e.g.shallow and narrow rivers. Since Yeung (1978)published his initial work on ship-interaction inshallow water, progress on unsteady interactionamong multiple ships has been slow though steadyover the following decades. With some exceptions,nearly all the published studies on ship-to-shipproblem neglected free-surface effects, and a rigidwall condition has often been applied on the watersurface as the boundary condition. When the speed ofthe ships is low, this assumption is reasonablyaccurate, as the hydrodynamic interaction is mainlyinduced by near-field disturbances. However, in manymaneuvering operations, the encountering orovertaking speeds are actually moderately high(Froude number Fn>0.2, where ≡ / , U isship speed, g the gravitational acceleration and L theship length), especially when the lateral separationbetween ships is the order of ship length. Here, the farfieldeffects arising from ship waves can be important.The hydrodynamic interaction model must take intoaccount of the surface-wave effects.Classical potential-flow formulation is only ableto deal with the boundary value problem (BVP) whenthere is only one speed involved in the free-surfaceboundary condition. For multiple ships travelling withdifferent speeds, it is not possible to express the freesurfaceboundary condition by a single velocitypotential. Instead, a superposition method can beapplied to account for the velocity field induced byeach vessel with its own and unique speed. The mainobjective of the present paper is to propose a rationalsuperposition method to handle the unsteady freesurfaceboundary condition containing two or morespeed terms, and validate its feasibility in predictingthe hydrodynamic behaviour of the ships duringovertaking or encountering operations. The solutionmethodology used in the present paper is a threedimensionalboundary-element method (BEM) basedon a Rankine-type (infinite-space) source function,initiated introduced in Bai & Yeung (1974). Thenumerical simulations are conducted by using an inhousedeveloped multi-body hydrodynamicinteraction program "MHydro". Waves generated andforces (or moments) are calculated when ships areencountering or passing each other. Published modeltestresults are used to validate our calculations andvery good agreement has been observed. Thenumerical results show that free-surface effects needto be taken into account for Fn > 0.2.
LanguageEnglish
Number of pages14
Publication statusPublished - 10 Aug 2018
Event32nd Symposium on Naval Hydrodynamics - Hamburg, Germany
Duration: 5 Aug 201810 Aug 2018

Conference

Conference32nd Symposium on Naval Hydrodynamics
CountryGermany
CityHamburg
Period5/08/1810/08/18

Fingerprint

Ships
Hydrodynamics
Wave effects
Froude number
Potential flow
Freight transportation
Surface waves
Boundary value problems
Rivers
Boundary conditions

Keywords

  • unsteady interactions
  • hydrodynamic
  • ship-interaction
  • free-surface effects

Cite this

Yuan, Z-M., & Yeung, R. W. (2018). Unsteady interactions among multiple ships with free-surface effects. Paper presented at 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany.
Yuan, Zhi-Ming ; Yeung, Ronald W. . / Unsteady interactions among multiple ships with free-surface effects. Paper presented at 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany.14 p.
@conference{617f0920ecdb403fa53427ac678ac7ba,
title = "Unsteady interactions among multiple ships with free-surface effects",
abstract = "Ships often have to pass each other in proximity inharbor area and waterways in dense shipping trafficenvironment. Hydrodynamic interaction occurs whena ship is overtaking (or being overtaken) orencountering other ships. Such an interactive effectcould be magnified in confined waterways, e.g.shallow and narrow rivers. Since Yeung (1978)published his initial work on ship-interaction inshallow water, progress on unsteady interactionamong multiple ships has been slow though steadyover the following decades. With some exceptions,nearly all the published studies on ship-to-shipproblem neglected free-surface effects, and a rigidwall condition has often been applied on the watersurface as the boundary condition. When the speed ofthe ships is low, this assumption is reasonablyaccurate, as the hydrodynamic interaction is mainlyinduced by near-field disturbances. However, in manymaneuvering operations, the encountering orovertaking speeds are actually moderately high(Froude number Fn>0.2, where ≡ / , U isship speed, g the gravitational acceleration and L theship length), especially when the lateral separationbetween ships is the order of ship length. Here, the farfieldeffects arising from ship waves can be important.The hydrodynamic interaction model must take intoaccount of the surface-wave effects.Classical potential-flow formulation is only ableto deal with the boundary value problem (BVP) whenthere is only one speed involved in the free-surfaceboundary condition. For multiple ships travelling withdifferent speeds, it is not possible to express the freesurfaceboundary condition by a single velocitypotential. Instead, a superposition method can beapplied to account for the velocity field induced byeach vessel with its own and unique speed. The mainobjective of the present paper is to propose a rationalsuperposition method to handle the unsteady freesurfaceboundary condition containing two or morespeed terms, and validate its feasibility in predictingthe hydrodynamic behaviour of the ships duringovertaking or encountering operations. The solutionmethodology used in the present paper is a threedimensionalboundary-element method (BEM) basedon a Rankine-type (infinite-space) source function,initiated introduced in Bai & Yeung (1974). Thenumerical simulations are conducted by using an inhousedeveloped multi-body hydrodynamicinteraction program {"}MHydro{"}. Waves generated andforces (or moments) are calculated when ships areencountering or passing each other. Published modeltestresults are used to validate our calculations andvery good agreement has been observed. Thenumerical results show that free-surface effects needto be taken into account for Fn > 0.2.",
keywords = "unsteady interactions, hydrodynamic, ship-interaction, free-surface effects",
author = "Zhi-Ming Yuan and Yeung, {Ronald W.}",
year = "2018",
month = "8",
day = "10",
language = "English",
note = "32nd Symposium on Naval Hydrodynamics ; Conference date: 05-08-2018 Through 10-08-2018",

}

Yuan, Z-M & Yeung, RW 2018, 'Unsteady interactions among multiple ships with free-surface effects' Paper presented at 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany, 5/08/18 - 10/08/18, .

Unsteady interactions among multiple ships with free-surface effects. / Yuan, Zhi-Ming; Yeung, Ronald W. .

2018. Paper presented at 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany.

Research output: Contribution to conferencePaper

TY - CONF

T1 - Unsteady interactions among multiple ships with free-surface effects

AU - Yuan, Zhi-Ming

AU - Yeung, Ronald W.

PY - 2018/8/10

Y1 - 2018/8/10

N2 - Ships often have to pass each other in proximity inharbor area and waterways in dense shipping trafficenvironment. Hydrodynamic interaction occurs whena ship is overtaking (or being overtaken) orencountering other ships. Such an interactive effectcould be magnified in confined waterways, e.g.shallow and narrow rivers. Since Yeung (1978)published his initial work on ship-interaction inshallow water, progress on unsteady interactionamong multiple ships has been slow though steadyover the following decades. With some exceptions,nearly all the published studies on ship-to-shipproblem neglected free-surface effects, and a rigidwall condition has often been applied on the watersurface as the boundary condition. When the speed ofthe ships is low, this assumption is reasonablyaccurate, as the hydrodynamic interaction is mainlyinduced by near-field disturbances. However, in manymaneuvering operations, the encountering orovertaking speeds are actually moderately high(Froude number Fn>0.2, where ≡ / , U isship speed, g the gravitational acceleration and L theship length), especially when the lateral separationbetween ships is the order of ship length. Here, the farfieldeffects arising from ship waves can be important.The hydrodynamic interaction model must take intoaccount of the surface-wave effects.Classical potential-flow formulation is only ableto deal with the boundary value problem (BVP) whenthere is only one speed involved in the free-surfaceboundary condition. For multiple ships travelling withdifferent speeds, it is not possible to express the freesurfaceboundary condition by a single velocitypotential. Instead, a superposition method can beapplied to account for the velocity field induced byeach vessel with its own and unique speed. The mainobjective of the present paper is to propose a rationalsuperposition method to handle the unsteady freesurfaceboundary condition containing two or morespeed terms, and validate its feasibility in predictingthe hydrodynamic behaviour of the ships duringovertaking or encountering operations. The solutionmethodology used in the present paper is a threedimensionalboundary-element method (BEM) basedon a Rankine-type (infinite-space) source function,initiated introduced in Bai & Yeung (1974). Thenumerical simulations are conducted by using an inhousedeveloped multi-body hydrodynamicinteraction program "MHydro". Waves generated andforces (or moments) are calculated when ships areencountering or passing each other. Published modeltestresults are used to validate our calculations andvery good agreement has been observed. Thenumerical results show that free-surface effects needto be taken into account for Fn > 0.2.

AB - Ships often have to pass each other in proximity inharbor area and waterways in dense shipping trafficenvironment. Hydrodynamic interaction occurs whena ship is overtaking (or being overtaken) orencountering other ships. Such an interactive effectcould be magnified in confined waterways, e.g.shallow and narrow rivers. Since Yeung (1978)published his initial work on ship-interaction inshallow water, progress on unsteady interactionamong multiple ships has been slow though steadyover the following decades. With some exceptions,nearly all the published studies on ship-to-shipproblem neglected free-surface effects, and a rigidwall condition has often been applied on the watersurface as the boundary condition. When the speed ofthe ships is low, this assumption is reasonablyaccurate, as the hydrodynamic interaction is mainlyinduced by near-field disturbances. However, in manymaneuvering operations, the encountering orovertaking speeds are actually moderately high(Froude number Fn>0.2, where ≡ / , U isship speed, g the gravitational acceleration and L theship length), especially when the lateral separationbetween ships is the order of ship length. Here, the farfieldeffects arising from ship waves can be important.The hydrodynamic interaction model must take intoaccount of the surface-wave effects.Classical potential-flow formulation is only ableto deal with the boundary value problem (BVP) whenthere is only one speed involved in the free-surfaceboundary condition. For multiple ships travelling withdifferent speeds, it is not possible to express the freesurfaceboundary condition by a single velocitypotential. Instead, a superposition method can beapplied to account for the velocity field induced byeach vessel with its own and unique speed. The mainobjective of the present paper is to propose a rationalsuperposition method to handle the unsteady freesurfaceboundary condition containing two or morespeed terms, and validate its feasibility in predictingthe hydrodynamic behaviour of the ships duringovertaking or encountering operations. The solutionmethodology used in the present paper is a threedimensionalboundary-element method (BEM) basedon a Rankine-type (infinite-space) source function,initiated introduced in Bai & Yeung (1974). Thenumerical simulations are conducted by using an inhousedeveloped multi-body hydrodynamicinteraction program "MHydro". Waves generated andforces (or moments) are calculated when ships areencountering or passing each other. Published modeltestresults are used to validate our calculations andvery good agreement has been observed. Thenumerical results show that free-surface effects needto be taken into account for Fn > 0.2.

KW - unsteady interactions

KW - hydrodynamic

KW - ship-interaction

KW - free-surface effects

UR - https://www.tuhh.de/SNH2018/

M3 - Paper

ER -

Yuan Z-M, Yeung RW. Unsteady interactions among multiple ships with free-surface effects. 2018. Paper presented at 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany.