Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: considerations for optimum results

O. Tziavou, S. Pytharouli, J. Souter

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

UAVs have been used in engineering for at least two decades, mainly focusing on structural health monitoring, geological surveys and site inspections, especially at cases where a rapid assessment is required, for example after a natural disaster. While there is a wide range of recognition algorithms for the automatic identification of structural damage, structural geological features etc. from the acquired images, the parameters affecting the resolution of these images are often overlooked. As a result, the UAV technology is not used at its full potential and at times, it is even regarded as leading to poor outcomes. This paper discusses the main parameters affecting the resolution of the images acquired by a UAV. We present a case study of the structural geological mapping of a coastal area carried out using two types of UAVs: a fixed wing and a hexacopter. A comparison between the structural geological maps based on the orthophotos and one produced using conventional techniques shows that the level of detail is the same and the time spent is at least 5 times less when using a UAV. The fixed wing is faster and therefore, can cover large areas while the copter gives better resolution images as it can fly at lower heights. The latter is cost and time effective only if it is used for surveys limited to small areas. The characterization of some structural geological features has not been possible based solely on the orthophotos. We show that in order to achieve the desired accuracy, a ground sample distance of at least half that value is required. We discuss technical aspects, such as the effect of topography and UAV orientation on the overlap value, the camera calibration, number of control points and lighting conditions, that should be taken into account prior to flying a UAV and provide recommendations on how to obtain optimum results, i.e. orthophotos that suit the needs of the project.
LanguageEnglish
Pages12-21
Number of pages10
JournalEngineering Geology
Volume232
Early online date7 Nov 2017
DOIs
Publication statusPublished - 8 Jan 2018

Fingerprint

Geological surveys
Unmanned aerial vehicles (UAV)
geological survey
orthophoto
engineering
geological feature
Fixed wings
health monitoring
geological mapping
natural disaster
image resolution
Structural health monitoring
Image resolution
vehicle
topography
calibration
Disasters
Topography
damage
Lighting

Keywords

  • UAV
  • fixed wing
  • VTOL
  • mapping
  • image resolution
  • engineering geological survey
  • unmanned aerial vehicle

Cite this

@article{f6af76ad07814b5a9af0ca2acab3f094,
title = "Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: considerations for optimum results",
abstract = "UAVs have been used in engineering for at least two decades, mainly focusing on structural health monitoring, geological surveys and site inspections, especially at cases where a rapid assessment is required, for example after a natural disaster. While there is a wide range of recognition algorithms for the automatic identification of structural damage, structural geological features etc. from the acquired images, the parameters affecting the resolution of these images are often overlooked. As a result, the UAV technology is not used at its full potential and at times, it is even regarded as leading to poor outcomes. This paper discusses the main parameters affecting the resolution of the images acquired by a UAV. We present a case study of the structural geological mapping of a coastal area carried out using two types of UAVs: a fixed wing and a hexacopter. A comparison between the structural geological maps based on the orthophotos and one produced using conventional techniques shows that the level of detail is the same and the time spent is at least 5 times less when using a UAV. The fixed wing is faster and therefore, can cover large areas while the copter gives better resolution images as it can fly at lower heights. The latter is cost and time effective only if it is used for surveys limited to small areas. The characterization of some structural geological features has not been possible based solely on the orthophotos. We show that in order to achieve the desired accuracy, a ground sample distance of at least half that value is required. We discuss technical aspects, such as the effect of topography and UAV orientation on the overlap value, the camera calibration, number of control points and lighting conditions, that should be taken into account prior to flying a UAV and provide recommendations on how to obtain optimum results, i.e. orthophotos that suit the needs of the project.",
keywords = "UAV, fixed wing, VTOL, mapping, image resolution, engineering geological survey, unmanned aerial vehicle",
author = "O. Tziavou and S. Pytharouli and J. Souter",
year = "2018",
month = "1",
day = "8",
doi = "10.1016/j.enggeo.2017.11.004",
language = "English",
volume = "232",
pages = "12--21",
journal = "Engineering Geology",
issn = "0013-7952",

}

Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys : considerations for optimum results. / Tziavou, O.; Pytharouli, S.; Souter, J.

In: Engineering Geology, Vol. 232, 08.01.2018, p. 12-21.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys

T2 - Engineering Geology

AU - Tziavou, O.

AU - Pytharouli, S.

AU - Souter, J.

PY - 2018/1/8

Y1 - 2018/1/8

N2 - UAVs have been used in engineering for at least two decades, mainly focusing on structural health monitoring, geological surveys and site inspections, especially at cases where a rapid assessment is required, for example after a natural disaster. While there is a wide range of recognition algorithms for the automatic identification of structural damage, structural geological features etc. from the acquired images, the parameters affecting the resolution of these images are often overlooked. As a result, the UAV technology is not used at its full potential and at times, it is even regarded as leading to poor outcomes. This paper discusses the main parameters affecting the resolution of the images acquired by a UAV. We present a case study of the structural geological mapping of a coastal area carried out using two types of UAVs: a fixed wing and a hexacopter. A comparison between the structural geological maps based on the orthophotos and one produced using conventional techniques shows that the level of detail is the same and the time spent is at least 5 times less when using a UAV. The fixed wing is faster and therefore, can cover large areas while the copter gives better resolution images as it can fly at lower heights. The latter is cost and time effective only if it is used for surveys limited to small areas. The characterization of some structural geological features has not been possible based solely on the orthophotos. We show that in order to achieve the desired accuracy, a ground sample distance of at least half that value is required. We discuss technical aspects, such as the effect of topography and UAV orientation on the overlap value, the camera calibration, number of control points and lighting conditions, that should be taken into account prior to flying a UAV and provide recommendations on how to obtain optimum results, i.e. orthophotos that suit the needs of the project.

AB - UAVs have been used in engineering for at least two decades, mainly focusing on structural health monitoring, geological surveys and site inspections, especially at cases where a rapid assessment is required, for example after a natural disaster. While there is a wide range of recognition algorithms for the automatic identification of structural damage, structural geological features etc. from the acquired images, the parameters affecting the resolution of these images are often overlooked. As a result, the UAV technology is not used at its full potential and at times, it is even regarded as leading to poor outcomes. This paper discusses the main parameters affecting the resolution of the images acquired by a UAV. We present a case study of the structural geological mapping of a coastal area carried out using two types of UAVs: a fixed wing and a hexacopter. A comparison between the structural geological maps based on the orthophotos and one produced using conventional techniques shows that the level of detail is the same and the time spent is at least 5 times less when using a UAV. The fixed wing is faster and therefore, can cover large areas while the copter gives better resolution images as it can fly at lower heights. The latter is cost and time effective only if it is used for surveys limited to small areas. The characterization of some structural geological features has not been possible based solely on the orthophotos. We show that in order to achieve the desired accuracy, a ground sample distance of at least half that value is required. We discuss technical aspects, such as the effect of topography and UAV orientation on the overlap value, the camera calibration, number of control points and lighting conditions, that should be taken into account prior to flying a UAV and provide recommendations on how to obtain optimum results, i.e. orthophotos that suit the needs of the project.

KW - UAV

KW - fixed wing

KW - VTOL

KW - mapping

KW - image resolution

KW - engineering geological survey

KW - unmanned aerial vehicle

UR - https://www.journals.elsevier.com/engineering-geology/

U2 - 10.1016/j.enggeo.2017.11.004

DO - 10.1016/j.enggeo.2017.11.004

M3 - Article

VL - 232

SP - 12

EP - 21

JO - Engineering Geology

JF - Engineering Geology

SN - 0013-7952

ER -