Projects per year
Abstract
Ionospheric heating experiments using high frequency ordinary (O) mode electromagnetic waves have shown the induced formation of magnetic field-aligned density striations in the ionospheric F-region. These striations are observed in association with lower-hybrid (LH) and upper-hybrid (UH) turbulence and significant electron heating, further enforcing the striations. High-energy electrons can result in the ionisation of neutrals and the formation of descending artificial ionospheric layers (DAILs). In the current context, we present the results of a two-dimensional (2D) numerical simulation conducted using a Vlasov-Maxwell code to study the mode-conversion of an O mode pump wave to trapped UH waves in a small-scale density striation. Subsequent multi-wave parametric decay is observed leading to UH and LH turbulence and the excitation of large amplitude electron Bernstein (EB) waves. Large-amplitude EB waves result in significant electron heating when the wave amplitude exceeds a threshold value for stochastic motion of the electrons. For typical experimental parameters, the simulated electron temperature is observed to rise from 1500 K to more than 5000 K in a fraction of a millisecond, much faster than the usual Ohmic heating due to collisions which occurs on second-scale. The stochastic electron heating could potentially be one of the mechanisms involved in the formation of DAILs.
Original language | English |
---|---|
Pages (from-to) | 10638-10650 |
Number of pages | 13 |
Journal | Journal of Geophysical Research: Space Physics |
Volume | 122 |
Issue number | 10 |
Early online date | 16 Oct 2017 |
DOIs | |
Publication status | E-pub ahead of print - 16 Oct 2017 |
Keywords
- Vlasov-Maxwell simulations
- plasma-wave coupling
- parametric 8 multi-wave excitation
- field aligned striation
- stochastic electron heating
- DAILS
- decending artificial iono- 14 spheric layers
Fingerprint
Dive into the research topics of 'Two-dimensional Vlasov simulations of fast stochastic electron heating'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Multi-Scale Numerical Modelling of Magnetised Plasma Turbulence
Eliasson, B. (Principal Investigator), Phelps, A. (Co-investigator) & Ronald, K. (Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
26/01/15 → 25/07/18
Project: Research
Datasets
-
Data for: "Two-dimensional Vlasov simulations of fast stochastic electron heating in ionospheric modification experiments"
Speirs, D. (Creator), Eliasson, B. (Creator) & Daldorff, L. K. S. (Contributor), University of Strathclyde, 27 Jul 2017
DOI: 10.15129/70a0a271-8378-49ef-a320-3de3a5525bae
Dataset