Trading off health and financial protection benefits with multiobjective optimisation

Özlem Karsu, Alec Morton

Research output: Contribution to journalArticle


Countries which are introducing a system of Universal Health Coverage have to make a number of key trade-offs, of which one is the trade-off between the level of coverage and the degree to which patients are exposed to potentially catastrophic financial risk. In this paper, we first present a way in which decision makers might be supported to focus on in a particular part of the trade-off curve and ultimately choose an efficient solution. We then introduce some multi objective optimisation models for generating the trade-off curves given data about potential treatment numbers, costs, and benefits. Using a dataset from Malawi, we demonstrate the approach and suggest a core index metric to make specific observations on the individual treatments. Moreover, as there has been some debate about the best way to measure financial exposure, we also investigate the extent to sensitivity of our results to the precise technical choice of financial exposure metric. Specifically, we consider two metrics, which are the total number of cases protected from catastrophic expenditure and a convex penalty function that penalizes out-of-pocket expenditures in an increasingly growing way, respectively.
Original languageEnglish
Number of pages34
JournalHealth Economics
Publication statusAccepted/In press - 5 Oct 2020


  • cost effectiveness analysis
  • economic anlysis
  • financial protection
  • health benefits packages
  • extended cost effectivness analysis

Fingerprint Dive into the research topics of 'Trading off health and financial protection benefits with multiobjective optimisation'. Together they form a unique fingerprint.

Cite this