Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures

L. Casagrande, B.M. Barnett, P. Bartalini, W.H. Bell, K. Borer, T. Bowcock, J. Buytaert, P. Chochula, P. Collins, C. Da Via, H. Dijkstra, O. Dormond, A. Esposito, R. Frei, V. Granata, J. Janos, I. Konorov, C. Lourenco, T.O. Niinikoski, S. PaganoV.G. Palmieri, C. Parkes, S. Paul, K. Pretzl, T. Ruf, G. Ruggiero, S. Saladino, L. Schmitt, K. Smith, P. Sonderegger, I. Stavitski, D. Steele, F. Vitobello

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

In this work we show that a heavily irradiated double-sided silicon microstrip detector recovers its performance when operated at cryogenic temperatures. A DELPHI microstrip detector, irradiated to a fluence of /spl sim/4/spl times/10/sup 14/ p/cm/sup 2/, no longer operational at room temperature, cannot be distinguished from a non-irradiated one when operated at T<120 K. Besides confirming the previously observed 'Lazarus effect' in single diodes, these results establish, for the first time, the possibility of using standard silicon detectors for tracking applications in extremely demanding radiation environments.
Original languageEnglish
Pages (from-to)228-231
Number of pages4
JournalIEEE Transactions on Nuclear Science
Volume46
Issue number3
DOIs
Publication statusPublished - 30 Jun 1999

Keywords

  • silicon detectors
  • cryogenic temperatures
  • Lazarus effect

Fingerprint

Dive into the research topics of 'Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures'. Together they form a unique fingerprint.

Cite this