Towards using nanodiamonds for deep tissue microscopy

Research output: Contribution to conferencePoster

Abstract

Diamond is a material of superlatives. When considering biological applications, the stability of diamond means it is biocompatible and it does not photobleach unlike most dyes. Nanoscale sized particles of diamond have been shown to be small enough to allow endocytosis. Furthermore, the presence of optically active defects in the diamond structure, such as the nitrogen-vacancy defect, allow optical addressing of individual nanodiamonds that also serves as a readout mechanism for probing the local electromagnetic environment. It is therefore been proposed the nanodiamond could serve as a nanoscale sensor for biologically generated electromagnetic fields. We are developing a superresolution microscope which will allow characterisation of the optical properties of nanodiamond that make it a potential sub-cellular sensor, such as the sensitivity of the optically active defects to small electromagnetic fields. It will also allow us to explore the more general use of diamond as an in-vivo fluorescent marker.
Our microscope is an adaptive optics enhanced, stimulated emission depletion (STED) microscope. Multi-colour excitation means that it is not only suitable for nanodiamonds, but can also simultaneously image a number of the other more conventional fluorophores, including STED-compatible near-infrared dyes such as ATTO 647N and Abberior Star 635. We are incorporating adaptive optics elements, such as a deformable mirror and a spatial light modulator, to correct for the sample-induced optical aberrations that are inevitable when imaging biological samples. While unavoidably adding complexity to the microscope hardware, it has repeatedly been demonstrated that such correction techniques allow high quality images from deep in the tissue of biological samples without the need for additional refractive index matching protocols.
Our microscope is currently under development and this poster will demonstrate the state of play of the instrument, including progress on the integration of the STED-enabling components and the effect of the adaptive optics on conventional confocal imaging with the system. We will also present our most up-to-date work on developing nanodiamonds as fluorescent labels for biological samples.

Conference

Conference18th European Light Microscopy Initiative Meeting 2018
Abbreviated titleELMI 2018
CountryIreland
CityDublin
Period5/06/188/06/18
Internet address

Fingerprint

Nanodiamonds
Diamond
Diamonds
Microscopic examination
Microscopes
Stimulated emission
Adaptive optics
Tissue
Electromagnetic fields
Defects
Coloring Agents
Dyes
Imaging techniques
Fluorophores
Sensors
Aberrations
Image quality
Vacancies
Stars
Labels

Keywords

  • nanodiamonds
  • deep tissue imaging
  • adaptive optics

Cite this

Johnstone, G. (2018). Towards using nanodiamonds for deep tissue microscopy. Poster session presented at 18th European Light Microscopy Initiative Meeting 2018, Dublin, Ireland.
Johnstone, Graeme. / Towards using nanodiamonds for deep tissue microscopy. Poster session presented at 18th European Light Microscopy Initiative Meeting 2018, Dublin, Ireland.
@conference{c26b106b62cc4147830e1b8fb067e089,
title = "Towards using nanodiamonds for deep tissue microscopy",
abstract = "Diamond is a material of superlatives. When considering biological applications, the stability of diamond means it is biocompatible and it does not photobleach unlike most dyes. Nanoscale sized particles of diamond have been shown to be small enough to allow endocytosis. Furthermore, the presence of optically active defects in the diamond structure, such as the nitrogen-vacancy defect, allow optical addressing of individual nanodiamonds that also serves as a readout mechanism for probing the local electromagnetic environment. It is therefore been proposed the nanodiamond could serve as a nanoscale sensor for biologically generated electromagnetic fields. We are developing a superresolution microscope which will allow characterisation of the optical properties of nanodiamond that make it a potential sub-cellular sensor, such as the sensitivity of the optically active defects to small electromagnetic fields. It will also allow us to explore the more general use of diamond as an in-vivo fluorescent marker.Our microscope is an adaptive optics enhanced, stimulated emission depletion (STED) microscope. Multi-colour excitation means that it is not only suitable for nanodiamonds, but can also simultaneously image a number of the other more conventional fluorophores, including STED-compatible near-infrared dyes such as ATTO 647N and Abberior Star 635. We are incorporating adaptive optics elements, such as a deformable mirror and a spatial light modulator, to correct for the sample-induced optical aberrations that are inevitable when imaging biological samples. While unavoidably adding complexity to the microscope hardware, it has repeatedly been demonstrated that such correction techniques allow high quality images from deep in the tissue of biological samples without the need for additional refractive index matching protocols.Our microscope is currently under development and this poster will demonstrate the state of play of the instrument, including progress on the integration of the STED-enabling components and the effect of the adaptive optics on conventional confocal imaging with the system. We will also present our most up-to-date work on developing nanodiamonds as fluorescent labels for biological samples.",
keywords = "nanodiamonds, deep tissue imaging, adaptive optics",
author = "Graeme Johnstone",
year = "2018",
month = "6",
day = "5",
language = "English",
note = "18th European Light Microscopy Initiative Meeting 2018, ELMI 2018 ; Conference date: 05-06-2018 Through 08-06-2018",
url = "https://www.elmi2018.eu/",

}

Johnstone, G 2018, 'Towards using nanodiamonds for deep tissue microscopy' 18th European Light Microscopy Initiative Meeting 2018, Dublin, Ireland, 5/06/18 - 8/06/18, .

Towards using nanodiamonds for deep tissue microscopy. / Johnstone, Graeme.

2018. Poster session presented at 18th European Light Microscopy Initiative Meeting 2018, Dublin, Ireland.

Research output: Contribution to conferencePoster

TY - CONF

T1 - Towards using nanodiamonds for deep tissue microscopy

AU - Johnstone, Graeme

PY - 2018/6/5

Y1 - 2018/6/5

N2 - Diamond is a material of superlatives. When considering biological applications, the stability of diamond means it is biocompatible and it does not photobleach unlike most dyes. Nanoscale sized particles of diamond have been shown to be small enough to allow endocytosis. Furthermore, the presence of optically active defects in the diamond structure, such as the nitrogen-vacancy defect, allow optical addressing of individual nanodiamonds that also serves as a readout mechanism for probing the local electromagnetic environment. It is therefore been proposed the nanodiamond could serve as a nanoscale sensor for biologically generated electromagnetic fields. We are developing a superresolution microscope which will allow characterisation of the optical properties of nanodiamond that make it a potential sub-cellular sensor, such as the sensitivity of the optically active defects to small electromagnetic fields. It will also allow us to explore the more general use of diamond as an in-vivo fluorescent marker.Our microscope is an adaptive optics enhanced, stimulated emission depletion (STED) microscope. Multi-colour excitation means that it is not only suitable for nanodiamonds, but can also simultaneously image a number of the other more conventional fluorophores, including STED-compatible near-infrared dyes such as ATTO 647N and Abberior Star 635. We are incorporating adaptive optics elements, such as a deformable mirror and a spatial light modulator, to correct for the sample-induced optical aberrations that are inevitable when imaging biological samples. While unavoidably adding complexity to the microscope hardware, it has repeatedly been demonstrated that such correction techniques allow high quality images from deep in the tissue of biological samples without the need for additional refractive index matching protocols.Our microscope is currently under development and this poster will demonstrate the state of play of the instrument, including progress on the integration of the STED-enabling components and the effect of the adaptive optics on conventional confocal imaging with the system. We will also present our most up-to-date work on developing nanodiamonds as fluorescent labels for biological samples.

AB - Diamond is a material of superlatives. When considering biological applications, the stability of diamond means it is biocompatible and it does not photobleach unlike most dyes. Nanoscale sized particles of diamond have been shown to be small enough to allow endocytosis. Furthermore, the presence of optically active defects in the diamond structure, such as the nitrogen-vacancy defect, allow optical addressing of individual nanodiamonds that also serves as a readout mechanism for probing the local electromagnetic environment. It is therefore been proposed the nanodiamond could serve as a nanoscale sensor for biologically generated electromagnetic fields. We are developing a superresolution microscope which will allow characterisation of the optical properties of nanodiamond that make it a potential sub-cellular sensor, such as the sensitivity of the optically active defects to small electromagnetic fields. It will also allow us to explore the more general use of diamond as an in-vivo fluorescent marker.Our microscope is an adaptive optics enhanced, stimulated emission depletion (STED) microscope. Multi-colour excitation means that it is not only suitable for nanodiamonds, but can also simultaneously image a number of the other more conventional fluorophores, including STED-compatible near-infrared dyes such as ATTO 647N and Abberior Star 635. We are incorporating adaptive optics elements, such as a deformable mirror and a spatial light modulator, to correct for the sample-induced optical aberrations that are inevitable when imaging biological samples. While unavoidably adding complexity to the microscope hardware, it has repeatedly been demonstrated that such correction techniques allow high quality images from deep in the tissue of biological samples without the need for additional refractive index matching protocols.Our microscope is currently under development and this poster will demonstrate the state of play of the instrument, including progress on the integration of the STED-enabling components and the effect of the adaptive optics on conventional confocal imaging with the system. We will also present our most up-to-date work on developing nanodiamonds as fluorescent labels for biological samples.

KW - nanodiamonds

KW - deep tissue imaging

KW - adaptive optics

UR - https://www.elmi2018.eu/

M3 - Poster

ER -

Johnstone G. Towards using nanodiamonds for deep tissue microscopy. 2018. Poster session presented at 18th European Light Microscopy Initiative Meeting 2018, Dublin, Ireland.