Projects per year
Abstract
A feasibility study is presented and the achieved key design milestones towards the first application of Chemical Species Tomography by Near-IR Absorption Tomography on a heavy duty, large-bore marine engine to visualise relative mixture strength are described. The engine is equipped with pre-chamber
ignition and operates using Liquefied Natural Gas with > 88.9 % methane content. Operation of the engine under maximum-load conditions is a key design requirement, with peak cylinder pressure and mean temperature exceeding 127,510 Torr (170 bar) and 850 K respectively. The near-IR
spectroscopic behaviour of methane is examined for suitable absorption and reference regions for the above application. In particular, the spectroscopic absorption around the 2ν3 transition region near 1,666 nm is approximated by simulation using data from the HITRAN database under worst-case
conditions. The simulation results are compared with methane spectra experimentally acquired at high temperature and ambient pressure. Interference from other chemical species as well as measurement linearity is also investigated. A 31-laser beam tomographic imaging array is proposed, which has been optimised to achieve higher spatial resolution performance in the vicinity of the pre-chamber’s orifices. To enable optical access, a novel, minimally-intrusive method is presented, utilising standard fibreoptics
and collimators
Original language | English |
---|---|
Number of pages | 10 |
Journal | Flow Measurement and Instrumentation |
Early online date | 4 Apr 2016 |
DOIs | |
Publication status | E-pub ahead of print - 4 Apr 2016 |
Keywords
- chemical species tomography
- in-cylinder engine diagnostics
- marine engine
- pre-chamber
- infra-red absorption spectoscopy
Fingerprint
Dive into the research topics of 'Towards in-cylinder chemical species tomography on large-bore IC engines with pre-chamber'. Together they form a unique fingerprint.Projects
- 1 Finished
-
FLITES: Fibre Laser Imaging For Gas Turbine Exhaust Species (FLITES)
Johnstone, W. (Principal Investigator) & Lengden, M. (Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/06/12 → 28/02/17
Project: Research
Research output
- 25 Citations
- 1 Article
-
Recovery of absorption line shapes with correction for the wavelength modulation characteristics of DFB lasers
Benoy, T., Lengden, M., Stewart, G. & Johnstone, W., 1 Jun 2016, In: IEEE Photonics Journal. 8, 3, 16 p., 1501717.Research output: Contribution to journal › Article › peer-review
Open AccessFile9 Citations (Scopus)162 Downloads (Pure)