Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK

M.R. Heal, L.R. Hibbs, R.M. Agius, I.J. Beverland

Research output: Contribution to journalArticle

152 Citations (Scopus)

Abstract

Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM10, PM2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median (n>349) daily water-soluble metal concentration in PM2.5 ranged from 0.05 ng m−3 for Ti to 5.1 ng m−3 for Pb; and in PM10 from 0.18 ng m−3 for Ti to 11.7 ng m−3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM2.5 ranged from 0.3 ng m−3 for As to 27.6 ng m−3 for Fe; and in PM10 from 0.37 ng m−3 for As to 183 ng m−3 for Fe. The PM2.5:PM10 ratio varied considerably with metal, from <17%, on average, for Ti and Fe, to >70% for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM10-2.5 fraction than of the PM2.5 fraction (0.9%). The proportion of water-soluble metal in each size-fraction varied considerably, from <10% water-soluble Fe and Ti in PM10−2.5, to >50% water-soluble V, Zn, As and Cd in PM2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90% of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust "resuspension" rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for trajectories traversing over land. For Mn, Fe, Cu, Zn, As and Pb there was greater correlation of metal concentration with BS mass than with either PM10 or PM2.5 mass, suggesting that BS reflectance monitoring could be a cost-effective surrogate measure of particle metal concentration in urban background air.
LanguageEnglish
Pages1417-1430
Number of pages13
JournalAtmospheric Environment
Volume39
Issue number8
DOIs
Publication statusPublished - 2005

Fingerprint

smoke
trace metal
metal
water
exhaust emission
acid water
resuspension
meteorology
air mass
reflectance
solubility
combustion
trajectory
air
monitoring
cost
particle
traffic

Keywords

  • airborne particles
  • aerosol
  • air mass
  • toxicology
  • environment
  • pollution

Cite this

@article{95e421e8058b42f9a7f5f872c9b8fdbc,
title = "Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK",
abstract = "Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM10, PM2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median (n>349) daily water-soluble metal concentration in PM2.5 ranged from 0.05 ng m−3 for Ti to 5.1 ng m−3 for Pb; and in PM10 from 0.18 ng m−3 for Ti to 11.7 ng m−3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM2.5 ranged from 0.3 ng m−3 for As to 27.6 ng m−3 for Fe; and in PM10 from 0.37 ng m−3 for As to 183 ng m−3 for Fe. The PM2.5:PM10 ratio varied considerably with metal, from <17{\%}, on average, for Ti and Fe, to >70{\%} for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM10-2.5 fraction than of the PM2.5 fraction (0.9{\%}). The proportion of water-soluble metal in each size-fraction varied considerably, from <10{\%} water-soluble Fe and Ti in PM10−2.5, to >50{\%} water-soluble V, Zn, As and Cd in PM2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90{\%} of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust {"}resuspension{"} rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for trajectories traversing over land. For Mn, Fe, Cu, Zn, As and Pb there was greater correlation of metal concentration with BS mass than with either PM10 or PM2.5 mass, suggesting that BS reflectance monitoring could be a cost-effective surrogate measure of particle metal concentration in urban background air.",
keywords = "airborne particles, aerosol, air mass, toxicology, environment, pollution",
author = "M.R. Heal and L.R. Hibbs and R.M. Agius and I.J. Beverland",
year = "2005",
doi = "10.1016/j.atmosenv.2004.11.026",
language = "English",
volume = "39",
pages = "1417--1430",
journal = "Atmospheric Environment",
issn = "1352-2310",
number = "8",

}

Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. / Heal, M.R.; Hibbs, L.R.; Agius, R.M.; Beverland, I.J.

In: Atmospheric Environment, Vol. 39, No. 8, 2005, p. 1417-1430.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK

AU - Heal, M.R.

AU - Hibbs, L.R.

AU - Agius, R.M.

AU - Beverland, I.J.

PY - 2005

Y1 - 2005

N2 - Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM10, PM2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median (n>349) daily water-soluble metal concentration in PM2.5 ranged from 0.05 ng m−3 for Ti to 5.1 ng m−3 for Pb; and in PM10 from 0.18 ng m−3 for Ti to 11.7 ng m−3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM2.5 ranged from 0.3 ng m−3 for As to 27.6 ng m−3 for Fe; and in PM10 from 0.37 ng m−3 for As to 183 ng m−3 for Fe. The PM2.5:PM10 ratio varied considerably with metal, from <17%, on average, for Ti and Fe, to >70% for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM10-2.5 fraction than of the PM2.5 fraction (0.9%). The proportion of water-soluble metal in each size-fraction varied considerably, from <10% water-soluble Fe and Ti in PM10−2.5, to >50% water-soluble V, Zn, As and Cd in PM2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90% of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust "resuspension" rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for trajectories traversing over land. For Mn, Fe, Cu, Zn, As and Pb there was greater correlation of metal concentration with BS mass than with either PM10 or PM2.5 mass, suggesting that BS reflectance monitoring could be a cost-effective surrogate measure of particle metal concentration in urban background air.

AB - Toxicological studies have implicated trace metals in airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. As part of an epidemiological study, co-located 24 h samples of PM10, PM2.5 and black smoke (BS) were collected for 1 year at an urban background site in Edinburgh, and each sample sequentially extracted with ultra-pure water, then concentrated HNO3/HCl, and analysed for Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb. This yields a comprehensive data set for UK urban airborne trace metal. The median (n>349) daily water-soluble metal concentration in PM2.5 ranged from 0.05 ng m−3 for Ti to 5.1 ng m−3 for Pb; and in PM10 from 0.18 ng m−3 for Ti to 11.7 ng m−3 for Fe. Median daily total (i.e. water+acid-extractable) metal concentration in PM2.5 ranged from 0.3 ng m−3 for As to 27.6 ng m−3 for Fe; and in PM10 from 0.37 ng m−3 for As to 183 ng m−3 for Fe. The PM2.5:PM10 ratio varied considerably with metal, from <17%, on average, for Ti and Fe, to >70% for V, As, Cd and Pb. The 11 trace metals constituted proportionally more of the PM10-2.5 fraction than of the PM2.5 fraction (0.9%). The proportion of water-soluble metal in each size-fraction varied considerably, from <10% water-soluble Fe and Ti in PM10−2.5, to >50% water-soluble V, Zn, As and Cd in PM2.5. Although Fe generally dominated the trace metal, water-soluble metal also contained significant Zn, Pb and Cu, and for all size and solubility fractions >90% of trace metal was comprised of Fe, Zn, Pb and Cu. Statistical analyses suggested three main sources: traffic; static combustion; and crustal. The association of metals with traffic (Cu, Fe, Mn, Pb, Zn) was consistent with traffic-induced non-exhaust "resuspension" rather than direct exhaust emission. Meteorology contributed to the wide variation in daily trace metal concentration. The proportion of trace metal in particles varied significantly with the air mass source and was highest on days for trajectories traversing over land. For Mn, Fe, Cu, Zn, As and Pb there was greater correlation of metal concentration with BS mass than with either PM10 or PM2.5 mass, suggesting that BS reflectance monitoring could be a cost-effective surrogate measure of particle metal concentration in urban background air.

KW - airborne particles

KW - aerosol

KW - air mass

KW - toxicology

KW - environment

KW - pollution

UR - http://dx.doi.org/10.1016/j.atmosenv.2004.11.026

U2 - 10.1016/j.atmosenv.2004.11.026

DO - 10.1016/j.atmosenv.2004.11.026

M3 - Article

VL - 39

SP - 1417

EP - 1430

JO - Atmospheric Environment

T2 - Atmospheric Environment

JF - Atmospheric Environment

SN - 1352-2310

IS - 8

ER -