Theta oscillations alternate with high amplitude neocortical population within synchronized states

Erin Munro Krull, Shuzo Sakata, Taro Toyoizumi

Research output: Contribution to journalArticlepeer-review

50 Downloads (Pure)

Abstract

Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5-4 Hz) and slow oscillations (<1 Hz) in the neocortex and large- and small- irregular activity in the hippocampus. However, it is not still fully characterized how neural populations contribute to the synchronized state. Here we apply independent component analysis (ICA) to parse which populations are involved in different kinds of neocortical activity, and find two populations that alternate throughout synchronized states. One population broadly affects neocortical deep layers, and is associated with larger amplitude slower neocortical oscillations. The other population exhibits theta-frequency oscillations that are not easily observed in raw field potential recordings. These theta oscillations apparently come from below the neocortex, suggesting hippocampal origin, and are associated with smaller amplitude faster neocortical oscillations. Relative involvement of these two alternating populations may indicate different modes of operation within synchronized states.
Original languageEnglish
Article number316
Number of pages16
JournalFrontiers in Neuroscience
Volume13
DOIs
Publication statusPublished - 12 Apr 2019

Keywords

  • synchronized state
  • independent component analysis
  • theta oscillation
  • non-REM
  • slow oscillation
  • delta oscillation
  • cortical state

Fingerprint

Dive into the research topics of 'Theta oscillations alternate with high amplitude neocortical population within synchronized states'. Together they form a unique fingerprint.

Cite this