Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation

Niall McAlinden, David Massoubre, Elliot Richardson, Erdan Gu, Shuzo Sakata, Martin D Dawson, Keith Mathieson

Research output: Contribution to journalArticlepeer-review

92 Citations (Scopus)
177 Downloads (Pure)


Within optogenetics there is a need for compact light sources that are capable of delivering light with excellent spatial, temporal, and spectral resolution to deep brain structures. Here, we demonstrate a custom GaN-based LED probe for such applications and the electrical, optical, and thermal properties are analyzed. The output power density and emission spectrum were found to be suitable for stimulating channelrhodopsin-2, one of the most common light-sensitive proteins currently used in optogenetics. The LED device produced high light intensities, far in excess of those required to stimulate the light-sensitive proteins within the neurons. Thermal performance was also investigated, illustrating that a broad range of operating regimes in pulsed mode are accessible while keeping a minimum increase in temperature for the brain (0.5°C). This type of custom device represents a significant step forward for the optogenetics community, allowing multiple bright excitation sites along the length of a minimally invasive neural probe.

This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Original languageEnglish
Pages (from-to)992-994
Number of pages3
JournalOptics Letters
Issue number6
Publication statusPublished - 15 Mar 2013


  • thermal
  • optical characterization
  • micro-LED probes
  • in vivo optogenetic neural stimulation

Cite this