Theory and design of a free-electron maser with two-dimensional feedback driven by a sheet electron beam

N S Ginzburg, N Y Peskov, A S Sergeev, A D R Phelps, I V Konoplev, G R M Robb, A W Cross, A V Arzhannikov, S L Sinitsky

Research output: Contribution to journalArticlepeer-review

73 Citations (Scopus)


The use of two-dimensional Bragg resonators of planar geometry, realizing two-dimensional (2D) distributed feedback, is considered as a method of producing spatially coherent radiation from a large sheet electron beam. The spectrum of eigenmodes is found for a 2D Bragg resonator when the sides of the resonator are open and also when they are closed. The higher selectivity of the open resonator in comparison with the closed one is shown. A time-domain analysis of the excitation of an open 2D Bragg resonator by a sheet electron beam demonstrates that a single-mode steady-state oscillation regime may be obtained for a sheet electron beam of width 100-1000 wavelengths. Nevertheless, for a free-electron maser (FEM) with a closed 2D Bragg resonator, a steady-state regime can also be realized if the beam width does not exceed 50-100 wavelengths. The parameters for a FEM with a 2D planar Bragg resonator driven by a sheet electron beam based on the U-2 accelerator (INP RAS, Novosibirsk) are estimated and the project is described. [S1063-651X(99)04207-5].

Original languageEnglish
Pages (from-to)935-945
Number of pages11
JournalPhysical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Issue number1
Publication statusPublished - Jul 1999


  • free electron laser
  • Bragg resonators
  • free electron lasers
  • free electron masers
  • 2D Bragg
  • FEL
  • electron beam
  • electron bunches
  • FEM


Dive into the research topics of 'Theory and design of a free-electron maser with two-dimensional feedback driven by a sheet electron beam'. Together they form a unique fingerprint.

Cite this