Theoretical study of the aspect ratio of a solar still with double slopes

Amos Madhlopa, Joseph Andrew Clarke

Research output: Contribution to conferencePaper

Abstract

Clean water is essential for good health which influences the social and economic development of any nation. However, there is limited access to safe water on a global scale. This challenge can be overcome through a multi-faceted approach, including the development of appropriate technologies for water treatment and decision-making tools. Solar distillation is one of the commonest non-conventional methods for improving the quality of water. In this vein, the most widely-exploited solar distillation system is a conventional solar still, which has a thin layer of saline water in a shallow basin with a transparent cover over the water and one or two slopes. The productivity of a solar distillation system is influenced by design, climatic and operational factors, with solar radiation being the most influential meteorological parameter. It is therefore necessary to optimize solar radiation that effectively reaches the base of the solar still. Previous attempts have sought to improve the design characteristics of conventional solar stills through the consideration of system geometry and optical properties of construction materials. One of the important geometric parameters is the ratio (R) of length to width (aspect ratio) of the still base. For a single-slope solar still (SSS), R has been examined in preceding studies. Nevertheless, there is a paucity of information on the aspect ratio of a double-slope solar still. In this study, a state-of-the-art software (ESP-r) was used to simulate the variation of effective insolation with R for a double-slope solar still (DSS) in the east-west and north-south orientations and a SSS facing south. Meteorological data captured at the University of Strathclyde and Guantanamo Bay was employed in this analysis. Simulation results show that the optical performance of a DSS was lower (in both orientations) than that of a SSS at both sites. The DSS collected more solar energy in the east-west orientation than north-south orientation, for a given value of R. In addition, effective insolation increased with R to an optimum level for both the DSS and SSS. Approximate optimum values of R were 3.0 and 2.0 for the University of Strathclyde and Guantanamo Bay respectively. However, the optimum value of R was not sensitive to the orientation of the DSS at the two sitesFurther, the DSS and SSS exhibited the same optimal value of R at a specific site. . It appears that R significantly affects solar collection in DSS.

Conference

ConferenceWorld Renewable Congress, WREC 2011
CountrySweden
CityLinköping
Period8/05/1113/05/11

Fingerprint

theoretical study
Aspect ratio
Distillation
Incident solar radiation
Solar radiation
Water
Saline water
Water treatment
Solar energy
distillation
Optical properties
Productivity
Decision making
Health
Economics
insolation
Geometry
solar radiation
water
appropriate technology

Keywords

  • aspect ratio
  • solar still

Cite this

Madhlopa, A., & Clarke, J. A. (2011). Theoretical study of the aspect ratio of a solar still with double slopes. Paper presented at World Renewable Congress, WREC 2011, Linköping, Sweden.
Madhlopa, Amos ; Clarke, Joseph Andrew. / Theoretical study of the aspect ratio of a solar still with double slopes. Paper presented at World Renewable Congress, WREC 2011, Linköping, Sweden.
@conference{dbd0c907923a49de925e3df7b90cdb5f,
title = "Theoretical study of the aspect ratio of a solar still with double slopes",
abstract = "Clean water is essential for good health which influences the social and economic development of any nation. However, there is limited access to safe water on a global scale. This challenge can be overcome through a multi-faceted approach, including the development of appropriate technologies for water treatment and decision-making tools. Solar distillation is one of the commonest non-conventional methods for improving the quality of water. In this vein, the most widely-exploited solar distillation system is a conventional solar still, which has a thin layer of saline water in a shallow basin with a transparent cover over the water and one or two slopes. The productivity of a solar distillation system is influenced by design, climatic and operational factors, with solar radiation being the most influential meteorological parameter. It is therefore necessary to optimize solar radiation that effectively reaches the base of the solar still. Previous attempts have sought to improve the design characteristics of conventional solar stills through the consideration of system geometry and optical properties of construction materials. One of the important geometric parameters is the ratio (R) of length to width (aspect ratio) of the still base. For a single-slope solar still (SSS), R has been examined in preceding studies. Nevertheless, there is a paucity of information on the aspect ratio of a double-slope solar still. In this study, a state-of-the-art software (ESP-r) was used to simulate the variation of effective insolation with R for a double-slope solar still (DSS) in the east-west and north-south orientations and a SSS facing south. Meteorological data captured at the University of Strathclyde and Guantanamo Bay was employed in this analysis. Simulation results show that the optical performance of a DSS was lower (in both orientations) than that of a SSS at both sites. The DSS collected more solar energy in the east-west orientation than north-south orientation, for a given value of R. In addition, effective insolation increased with R to an optimum level for both the DSS and SSS. Approximate optimum values of R were 3.0 and 2.0 for the University of Strathclyde and Guantanamo Bay respectively. However, the optimum value of R was not sensitive to the orientation of the DSS at the two sitesFurther, the DSS and SSS exhibited the same optimal value of R at a specific site. . It appears that R significantly affects solar collection in DSS.",
keywords = "aspect ratio, solar still",
author = "Amos Madhlopa and Clarke, {Joseph Andrew}",
year = "2011",
month = "5",
day = "8",
language = "English",
note = "World Renewable Congress, WREC 2011 ; Conference date: 08-05-2011 Through 13-05-2011",

}

Madhlopa, A & Clarke, JA 2011, 'Theoretical study of the aspect ratio of a solar still with double slopes' Paper presented at World Renewable Congress, WREC 2011, Linköping, Sweden, 8/05/11 - 13/05/11, .

Theoretical study of the aspect ratio of a solar still with double slopes. / Madhlopa, Amos; Clarke, Joseph Andrew.

2011. Paper presented at World Renewable Congress, WREC 2011, Linköping, Sweden.

Research output: Contribution to conferencePaper

TY - CONF

T1 - Theoretical study of the aspect ratio of a solar still with double slopes

AU - Madhlopa, Amos

AU - Clarke, Joseph Andrew

PY - 2011/5/8

Y1 - 2011/5/8

N2 - Clean water is essential for good health which influences the social and economic development of any nation. However, there is limited access to safe water on a global scale. This challenge can be overcome through a multi-faceted approach, including the development of appropriate technologies for water treatment and decision-making tools. Solar distillation is one of the commonest non-conventional methods for improving the quality of water. In this vein, the most widely-exploited solar distillation system is a conventional solar still, which has a thin layer of saline water in a shallow basin with a transparent cover over the water and one or two slopes. The productivity of a solar distillation system is influenced by design, climatic and operational factors, with solar radiation being the most influential meteorological parameter. It is therefore necessary to optimize solar radiation that effectively reaches the base of the solar still. Previous attempts have sought to improve the design characteristics of conventional solar stills through the consideration of system geometry and optical properties of construction materials. One of the important geometric parameters is the ratio (R) of length to width (aspect ratio) of the still base. For a single-slope solar still (SSS), R has been examined in preceding studies. Nevertheless, there is a paucity of information on the aspect ratio of a double-slope solar still. In this study, a state-of-the-art software (ESP-r) was used to simulate the variation of effective insolation with R for a double-slope solar still (DSS) in the east-west and north-south orientations and a SSS facing south. Meteorological data captured at the University of Strathclyde and Guantanamo Bay was employed in this analysis. Simulation results show that the optical performance of a DSS was lower (in both orientations) than that of a SSS at both sites. The DSS collected more solar energy in the east-west orientation than north-south orientation, for a given value of R. In addition, effective insolation increased with R to an optimum level for both the DSS and SSS. Approximate optimum values of R were 3.0 and 2.0 for the University of Strathclyde and Guantanamo Bay respectively. However, the optimum value of R was not sensitive to the orientation of the DSS at the two sitesFurther, the DSS and SSS exhibited the same optimal value of R at a specific site. . It appears that R significantly affects solar collection in DSS.

AB - Clean water is essential for good health which influences the social and economic development of any nation. However, there is limited access to safe water on a global scale. This challenge can be overcome through a multi-faceted approach, including the development of appropriate technologies for water treatment and decision-making tools. Solar distillation is one of the commonest non-conventional methods for improving the quality of water. In this vein, the most widely-exploited solar distillation system is a conventional solar still, which has a thin layer of saline water in a shallow basin with a transparent cover over the water and one or two slopes. The productivity of a solar distillation system is influenced by design, climatic and operational factors, with solar radiation being the most influential meteorological parameter. It is therefore necessary to optimize solar radiation that effectively reaches the base of the solar still. Previous attempts have sought to improve the design characteristics of conventional solar stills through the consideration of system geometry and optical properties of construction materials. One of the important geometric parameters is the ratio (R) of length to width (aspect ratio) of the still base. For a single-slope solar still (SSS), R has been examined in preceding studies. Nevertheless, there is a paucity of information on the aspect ratio of a double-slope solar still. In this study, a state-of-the-art software (ESP-r) was used to simulate the variation of effective insolation with R for a double-slope solar still (DSS) in the east-west and north-south orientations and a SSS facing south. Meteorological data captured at the University of Strathclyde and Guantanamo Bay was employed in this analysis. Simulation results show that the optical performance of a DSS was lower (in both orientations) than that of a SSS at both sites. The DSS collected more solar energy in the east-west orientation than north-south orientation, for a given value of R. In addition, effective insolation increased with R to an optimum level for both the DSS and SSS. Approximate optimum values of R were 3.0 and 2.0 for the University of Strathclyde and Guantanamo Bay respectively. However, the optimum value of R was not sensitive to the orientation of the DSS at the two sitesFurther, the DSS and SSS exhibited the same optimal value of R at a specific site. . It appears that R significantly affects solar collection in DSS.

KW - aspect ratio

KW - solar still

UR - http://www.wrec2011.com

M3 - Paper

ER -

Madhlopa A, Clarke JA. Theoretical study of the aspect ratio of a solar still with double slopes. 2011. Paper presented at World Renewable Congress, WREC 2011, Linköping, Sweden.