Projects per year
Abstract
The vibrational dynamics of (mu-propanedithiolate)Fe-2(CO)(4)(CN)(2)(2-), a model compound of the active site of the [FeFe]-hydrogenase enzyme, have been examined via ultrafast 2D-IR spectroscopy. The results indicate that the vibrational coupling between the stretching modes of the CO and CN ligands is small and restricted to certain modes but the slow growth of off-diagonal peaks is assigned to population transfer processes occurring between these modes on timescales of 30-40 ps. Analysis of the dynamics in concert with anharmonic density functional theory simulations shows that the presence of CN ligands alters the vibrational relaxation dynamics of the CO modes in comparison to all-carbonyl model systems and suggests that the presence of these ligands in the enzyme may be an important feature in terms of directing the vibrational relaxation mechanism.
Original language | English |
---|---|
Pages (from-to) | 10295-10305 |
Number of pages | 11 |
Journal | Physical Chemistry Chemical Physics |
Volume | 13 |
Issue number | 21 |
Early online date | 3 May 2011 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- 2-dimensional infrared-spectroscopy
- FE-only hydrogenases
- 2d ir spectroscopy
- molecular calculations
- active-site
- subsite
- potentials
- equilibrium
- elements
- desulfovibrio-desulfuricans
- TIC - Bionanotechnology
Fingerprint
Dive into the research topics of 'The role of CN and CO ligands in the vibrational relaxation dynamics of model compounds of the [FeFe]-hydrogenase enzyme'. Together they form a unique fingerprint.Projects
- 1 Finished
-
TWO DIMENSIONAL INFRARED SPECTROSCOPY - A NEW APPROACH TO UNDERSTANDING ENZYME CHEMISTRY
Hunt, N. (Fellow)
EPSRC (Engineering and Physical Sciences Research Council)
1/10/06 → 30/09/11
Project: Research Fellowship