The partition of temporal gene expression sequence using discrete wavelet transform for modelling

Research output: Contribution to conferencePaper

Abstract

Switch-like phenomena within biological systems complicate the inference of gene regulatory networks. In this case, the difficulty comes from the fact that the model cannot be inferred from the mixed unknown contexts directly. It is necessary to identify the dasiapurepsila contexts from the data and given a dasiapurepsila context, subsequently infer a model. In this paper, a wavelet-based approach is addressed for the efficient partitioning of data into different biological contexts. The wavelet transform is a well known tool from the signal processing domain. This approach is able to identify the switches in the various conditions, with much lower computational cost than existing techniques. In order to demonstrate the proposed algorithm, experiments on the basis of simulated sequences and a synthetic sequence derived from real gene networks have been performed.
Original languageEnglish
Pages1-4
Number of pages4
DOIs
Publication statusPublished - May 2009
EventIEEE Workshop on Genomic Signal Processing -
Duration: 1 Jan 1900 → …

Conference

ConferenceIEEE Workshop on Genomic Signal Processing
Period1/01/00 → …

Keywords

  • biological system modeling
  • biological systems
  • biomedical system processing
  • bioinformatics
  • discrete wavelet transforms
  • genetics

Fingerprint

Dive into the research topics of 'The partition of temporal gene expression sequence using discrete wavelet transform for modelling'. Together they form a unique fingerprint.

Cite this