The next stage of naval electrical engineering system testing at the Power Networks Demonstration Centre

Research output: Contribution to conferencePaper

Abstract

This paper gives an overview of the Power Hardware in the Loop (PHIL) system, that is now operational at the PNDC (a University of Strathclyde Research Centre), to extend the centres capability for marine electrical system testing. In this paper, the key components of the PHIL system and their corresponding interfaces are presented; representative case studies showing typical applications for the PHIL system at the PNDC are illustrated; and the next stage of future marine power system testing (flywheel energy storage) utilising the PHIL platform is discussed.

The objective of this test bed is to: facilitate integration of engineering systems into marine power system platforms; support the development of future electric ships; to de-risk the integration of the next generation of energy weapons and sensors; and to supplement and replace the need for ship demonstrators. This facility development and associated project plan involves a productive mix of industry, academia, UK MoD and US DoD.

The two key components of the PHIL test bed are: (1) A Real Time Digital Simulator (RTDS) system that is capable of simulating marine electrical systems in real time; and (2) A Triphase converter, a uniquely modular solution that can be re-configured for AC and DC output, used as the link between simulation and real hardware under test. The RTDS interface with the Triphase converter system employs fibre communication to issue control commands and receive measurement feedback. The hardware to be tested, connected to the Triphase, is interfaced directly to simulation in real time. In this paper it is demonstrated how a flywheel energy storage device could be directly connected to a simulated ship power system and operated in real time. This test setup would be used to evaluate the interaction between the ship power system and flywheel.

This test bed can be reconfigured for long term research and development for a multitude of ship power system solutions. The ship power system is represented in simulation which means it can be modified to represent existing or planned ship architectures. This facilitates testing of hardware planned for retrofit in existing ship power systems; and it allows future ship powers systems to be simulated and interfaced with existing hardware. Both options support reduced cost and life cycle time to develop ship power systems.

Conference

ConferenceMarine Electrical and Control Systems Safety Conference
Abbreviated titleMECSS 2017
CountryUnited Kingdom
CityGlasgow
Period22/11/1723/11/17

Fingerprint

Electrical engineering
Ships
Demonstrations
Hardware
Testing
Flywheels
Energy storage
Simulators
Systems engineering
Life cycle
Feedback
Fibers
Communication

Keywords

  • real time simulations
  • power hardware in the loop
  • flywheel energy storage
  • marine power systems

Cite this

Jennett, K. I. (2017). The next stage of naval electrical engineering system testing at the Power Networks Demonstration Centre. Paper presented at Marine Electrical and Control Systems Safety Conference, Glasgow, United Kingdom.
Jennett, K I. / The next stage of naval electrical engineering system testing at the Power Networks Demonstration Centre. Paper presented at Marine Electrical and Control Systems Safety Conference, Glasgow, United Kingdom.11 p.
@conference{a6f16b46445c4cc5b10de94408f00b3e,
title = "The next stage of naval electrical engineering system testing at the Power Networks Demonstration Centre",
abstract = "This paper gives an overview of the Power Hardware in the Loop (PHIL) system, that is now operational at the PNDC (a University of Strathclyde Research Centre), to extend the centres capability for marine electrical system testing. In this paper, the key components of the PHIL system and their corresponding interfaces are presented; representative case studies showing typical applications for the PHIL system at the PNDC are illustrated; and the next stage of future marine power system testing (flywheel energy storage) utilising the PHIL platform is discussed. The objective of this test bed is to: facilitate integration of engineering systems into marine power system platforms; support the development of future electric ships; to de-risk the integration of the next generation of energy weapons and sensors; and to supplement and replace the need for ship demonstrators. This facility development and associated project plan involves a productive mix of industry, academia, UK MoD and US DoD. The two key components of the PHIL test bed are: (1) A Real Time Digital Simulator (RTDS) system that is capable of simulating marine electrical systems in real time; and (2) A Triphase converter, a uniquely modular solution that can be re-configured for AC and DC output, used as the link between simulation and real hardware under test. The RTDS interface with the Triphase converter system employs fibre communication to issue control commands and receive measurement feedback. The hardware to be tested, connected to the Triphase, is interfaced directly to simulation in real time. In this paper it is demonstrated how a flywheel energy storage device could be directly connected to a simulated ship power system and operated in real time. This test setup would be used to evaluate the interaction between the ship power system and flywheel. This test bed can be reconfigured for long term research and development for a multitude of ship power system solutions. The ship power system is represented in simulation which means it can be modified to represent existing or planned ship architectures. This facilitates testing of hardware planned for retrofit in existing ship power systems; and it allows future ship powers systems to be simulated and interfaced with existing hardware. Both options support reduced cost and life cycle time to develop ship power systems.",
keywords = "real time simulations, power hardware in the loop, flywheel energy storage, marine power systems",
author = "Jennett, {K I}",
year = "2017",
month = "11",
day = "23",
language = "English",
note = "Marine Electrical and Control Systems Safety Conference, MECSS 2017 ; Conference date: 22-11-2017 Through 23-11-2017",

}

Jennett, KI 2017, 'The next stage of naval electrical engineering system testing at the Power Networks Demonstration Centre' Paper presented at Marine Electrical and Control Systems Safety Conference, Glasgow, United Kingdom, 22/11/17 - 23/11/17, .

The next stage of naval electrical engineering system testing at the Power Networks Demonstration Centre. / Jennett, K I.

2017. Paper presented at Marine Electrical and Control Systems Safety Conference, Glasgow, United Kingdom.

Research output: Contribution to conferencePaper

TY - CONF

T1 - The next stage of naval electrical engineering system testing at the Power Networks Demonstration Centre

AU - Jennett, K I

PY - 2017/11/23

Y1 - 2017/11/23

N2 - This paper gives an overview of the Power Hardware in the Loop (PHIL) system, that is now operational at the PNDC (a University of Strathclyde Research Centre), to extend the centres capability for marine electrical system testing. In this paper, the key components of the PHIL system and their corresponding interfaces are presented; representative case studies showing typical applications for the PHIL system at the PNDC are illustrated; and the next stage of future marine power system testing (flywheel energy storage) utilising the PHIL platform is discussed. The objective of this test bed is to: facilitate integration of engineering systems into marine power system platforms; support the development of future electric ships; to de-risk the integration of the next generation of energy weapons and sensors; and to supplement and replace the need for ship demonstrators. This facility development and associated project plan involves a productive mix of industry, academia, UK MoD and US DoD. The two key components of the PHIL test bed are: (1) A Real Time Digital Simulator (RTDS) system that is capable of simulating marine electrical systems in real time; and (2) A Triphase converter, a uniquely modular solution that can be re-configured for AC and DC output, used as the link between simulation and real hardware under test. The RTDS interface with the Triphase converter system employs fibre communication to issue control commands and receive measurement feedback. The hardware to be tested, connected to the Triphase, is interfaced directly to simulation in real time. In this paper it is demonstrated how a flywheel energy storage device could be directly connected to a simulated ship power system and operated in real time. This test setup would be used to evaluate the interaction between the ship power system and flywheel. This test bed can be reconfigured for long term research and development for a multitude of ship power system solutions. The ship power system is represented in simulation which means it can be modified to represent existing or planned ship architectures. This facilitates testing of hardware planned for retrofit in existing ship power systems; and it allows future ship powers systems to be simulated and interfaced with existing hardware. Both options support reduced cost and life cycle time to develop ship power systems.

AB - This paper gives an overview of the Power Hardware in the Loop (PHIL) system, that is now operational at the PNDC (a University of Strathclyde Research Centre), to extend the centres capability for marine electrical system testing. In this paper, the key components of the PHIL system and their corresponding interfaces are presented; representative case studies showing typical applications for the PHIL system at the PNDC are illustrated; and the next stage of future marine power system testing (flywheel energy storage) utilising the PHIL platform is discussed. The objective of this test bed is to: facilitate integration of engineering systems into marine power system platforms; support the development of future electric ships; to de-risk the integration of the next generation of energy weapons and sensors; and to supplement and replace the need for ship demonstrators. This facility development and associated project plan involves a productive mix of industry, academia, UK MoD and US DoD. The two key components of the PHIL test bed are: (1) A Real Time Digital Simulator (RTDS) system that is capable of simulating marine electrical systems in real time; and (2) A Triphase converter, a uniquely modular solution that can be re-configured for AC and DC output, used as the link between simulation and real hardware under test. The RTDS interface with the Triphase converter system employs fibre communication to issue control commands and receive measurement feedback. The hardware to be tested, connected to the Triphase, is interfaced directly to simulation in real time. In this paper it is demonstrated how a flywheel energy storage device could be directly connected to a simulated ship power system and operated in real time. This test setup would be used to evaluate the interaction between the ship power system and flywheel. This test bed can be reconfigured for long term research and development for a multitude of ship power system solutions. The ship power system is represented in simulation which means it can be modified to represent existing or planned ship architectures. This facilitates testing of hardware planned for retrofit in existing ship power systems; and it allows future ship powers systems to be simulated and interfaced with existing hardware. Both options support reduced cost and life cycle time to develop ship power systems.

KW - real time simulations

KW - power hardware in the loop

KW - flywheel energy storage

KW - marine power systems

M3 - Paper

ER -

Jennett KI. The next stage of naval electrical engineering system testing at the Power Networks Demonstration Centre. 2017. Paper presented at Marine Electrical and Control Systems Safety Conference, Glasgow, United Kingdom.