The next generation of advanced spectroscopy: surface enhanced raman scattering from metal nanoparticles

Research output: Contribution to journalArticle

63 Citations (Scopus)
54 Downloads (Pure)

Abstract

Surface enhanced Raman scattering (SERS) has enjoyed an ever growing research base since its discovery with the number of papers published using the technique and investigating the basis behind it growing exponentially year by year.[1] SERS is an advancement of Raman scattering which overcomes some of the limitations of normal Raman scattering. Raman scattering is a vibrational spectroscopy which gives molecularly specific information relating to specific molecular species. The disadvantage of Raman scattering is that it is an inherently weak process, however it can be used in aqueous solutions, due to water being a weak Raman scatterer, lending itself to analysis and study of molecules in aqueous solution including the study of biomolecules. Another major disadvantage is the fluorescence which often accompanies Raman scattering and can sometimes overwhelm the bands in the spectrum rendering the experiment useless. To overcome this, the phenomenon of surface enhanced Raman scattering can be used.
Original languageEnglish
Pages (from-to)9325-9327
Number of pages3
JournalAgewandte Chemie-International Edition
Volume49
Issue number49
DOIs
Publication statusPublished - 2010

Keywords

  • nanoparticles
  • surface enhanced raman scattering
  • spectroscopy
  • sensing

Fingerprint Dive into the research topics of 'The next generation of advanced spectroscopy: surface enhanced raman scattering from metal nanoparticles'. Together they form a unique fingerprint.

  • Cite this