The new simple design equations for the ultimate compressive strength of imperfect stiffened plates

Ozgur Ozguc, Purnendu K. Das, Nigel Barltrop

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

The new simple design equations for predicting the ultimate compressive strength of stiffened plates with initial imperfections in the form of welding-induced residual stresses and geometric deflections were developed in this study. A non-linear finite element method was used to investigate on 60 ANSYS elastic-plastic buckling analyses of a wide range of typical ship panel geometries. Reduction factors of the ultimate strength are produced from the results of 60 ANSYS inelastic finite element analyses. The proposed design equations have been developed based on these reduction factors. For the real ship structural stiffened plates, the most general loading case is a combination of longitudinal stress, transverse stress, shear stress and lateral pressure. The new simplified analytical method was generalized to deal with such combined load cases. The accuracy of the proposed equations was validated by the experimental results. Comparisons show that the adopted method has sufficient accuracy for practical applications in ship design.
Original languageEnglish
Pages (from-to)970-986
Number of pages16
JournalOcean Engineering
Volume34
Issue number7
DOIs
Publication statusPublished - May 2007

    Fingerprint

Keywords

  • marine engineering
  • ship panels
  • ship design

Cite this