The insulin- and glucagon-stimulated 'dense-vesicle' high-affinity cyclic AMP phosphodiesterase from rat liver. Purification, characterization and inhibitor sensitivity

N J Pyne, M E Cooper, M D Houslay

Research output: Contribution to journalArticle

57 Citations (Scopus)

Abstract

The hormone-stimulated 'dense-vesicle' cyclic AMP phosphodiesterase was solubilized as a proteolytically 'clipped' species, and purified to apparent homogeneity from rat liver with a 2000-3000-fold purification and a 13-18% yield. It appeared to be a dimer (Mr 112,000), of two Mr-57,000 subunits. Solubilization of either a liver or a hepatocyte membrane fraction, with sodium cholate in the presence of the protein inhibitor benzamidine, identified three protein bands which could be immunoprecipitated by a polyclonal antibody raised against the pure enzyme. The major band at Mr 62,000 is suggested to be the native 'dense-vesicle' enzyme, having a Mr-5000 extension which serves to anchor this enzyme to the membrane and which is cleaved off during proteolytic solubilization; the Mr-200,000 band is an aggregate of the Mr-62,000 species, and the Mr-63,000 species is possibly a precursor. The purified 'clipped' enzyme hydrolysed cyclic AMP with kinetics indicative of apparent negative co-operativity, with a Hill coefficient (h) of 0.43 and limiting kinetic constants of Km1 = 0.3 +/- 0.05 microM, Km2 = 29 +/- 6 microM, Vmax.1 = 0.114 +/- 0.015 unit/mg of protein and Vmax.2 = 0.633 +/- 0.054 unit/mg of protein. It hydrolysed cyclic GMP with Michaelis kinetics, Km = 10 +/- 1 microM and Vmax. = 4.1 +/- 0.2 units/mg of protein. Cyclic GMP was a potent inhibitor of cyclic AMP hydrolysis, with an IC50 (concn. giving 50% inhibition) of 0.20 +/- 0.01 microM-cyclic GMP when assayed at 0.1 microM-cyclic AMP. This enzyme was inhibited potently by several drugs known to exert positive inotropic effects on the heart, was extremely thermolabile, with a half-life of 4.5 +/- 0.5 min at 40 degrees C, and was shown to be distinct from the rat liver insulin-stimulated peripheral-plasma-membrane cyclic AMP phosphodiesterase [Marchmont, Ayad & Houslay (1981) Biochem. J. 195, 645-652].
LanguageEnglish
Pages33-42
Number of pages10
JournalBiochemical journal
Volume242
Issue number1
Publication statusPublished - 1987

Fingerprint

Phosphoric Diester Hydrolases
Glucagon
Liver
Cyclic AMP
Purification
Rats
Insulin
Cyclic GMP
Enzymes
Proteins
Kinetics
Sodium Cholate
Membranes
Cell membranes
Anchors
Dimers
Inhibitory Concentration 50
Half-Life
Hepatocytes
Hydrolysis

Keywords

  • 3',5'-cyclic-AMP phosphodiesterases
  • animals
  • chemical precipitation
  • electrophoresis, polyacrylamide gel
  • glucagon
  • insulin
  • kinetics
  • liver
  • peptide fragments

Cite this

@article{3ac1df3be23a46f2aee4b0c9203f3979,
title = "The insulin- and glucagon-stimulated 'dense-vesicle' high-affinity cyclic AMP phosphodiesterase from rat liver. Purification, characterization and inhibitor sensitivity",
abstract = "The hormone-stimulated 'dense-vesicle' cyclic AMP phosphodiesterase was solubilized as a proteolytically 'clipped' species, and purified to apparent homogeneity from rat liver with a 2000-3000-fold purification and a 13-18{\%} yield. It appeared to be a dimer (Mr 112,000), of two Mr-57,000 subunits. Solubilization of either a liver or a hepatocyte membrane fraction, with sodium cholate in the presence of the protein inhibitor benzamidine, identified three protein bands which could be immunoprecipitated by a polyclonal antibody raised against the pure enzyme. The major band at Mr 62,000 is suggested to be the native 'dense-vesicle' enzyme, having a Mr-5000 extension which serves to anchor this enzyme to the membrane and which is cleaved off during proteolytic solubilization; the Mr-200,000 band is an aggregate of the Mr-62,000 species, and the Mr-63,000 species is possibly a precursor. The purified 'clipped' enzyme hydrolysed cyclic AMP with kinetics indicative of apparent negative co-operativity, with a Hill coefficient (h) of 0.43 and limiting kinetic constants of Km1 = 0.3 +/- 0.05 microM, Km2 = 29 +/- 6 microM, Vmax.1 = 0.114 +/- 0.015 unit/mg of protein and Vmax.2 = 0.633 +/- 0.054 unit/mg of protein. It hydrolysed cyclic GMP with Michaelis kinetics, Km = 10 +/- 1 microM and Vmax. = 4.1 +/- 0.2 units/mg of protein. Cyclic GMP was a potent inhibitor of cyclic AMP hydrolysis, with an IC50 (concn. giving 50{\%} inhibition) of 0.20 +/- 0.01 microM-cyclic GMP when assayed at 0.1 microM-cyclic AMP. This enzyme was inhibited potently by several drugs known to exert positive inotropic effects on the heart, was extremely thermolabile, with a half-life of 4.5 +/- 0.5 min at 40 degrees C, and was shown to be distinct from the rat liver insulin-stimulated peripheral-plasma-membrane cyclic AMP phosphodiesterase [Marchmont, Ayad & Houslay (1981) Biochem. J. 195, 645-652].",
keywords = "3',5'-cyclic-AMP phosphodiesterases, animals, chemical precipitation, electrophoresis, polyacrylamide gel, glucagon, insulin, kinetics, liver, peptide fragments",
author = "Pyne, {N J} and Cooper, {M E} and Houslay, {M D}",
year = "1987",
language = "English",
volume = "242",
pages = "33--42",
journal = "Biochemical Journal",
issn = "0264-6021",
number = "1",

}

TY - JOUR

T1 - The insulin- and glucagon-stimulated 'dense-vesicle' high-affinity cyclic AMP phosphodiesterase from rat liver. Purification, characterization and inhibitor sensitivity

AU - Pyne, N J

AU - Cooper, M E

AU - Houslay, M D

PY - 1987

Y1 - 1987

N2 - The hormone-stimulated 'dense-vesicle' cyclic AMP phosphodiesterase was solubilized as a proteolytically 'clipped' species, and purified to apparent homogeneity from rat liver with a 2000-3000-fold purification and a 13-18% yield. It appeared to be a dimer (Mr 112,000), of two Mr-57,000 subunits. Solubilization of either a liver or a hepatocyte membrane fraction, with sodium cholate in the presence of the protein inhibitor benzamidine, identified three protein bands which could be immunoprecipitated by a polyclonal antibody raised against the pure enzyme. The major band at Mr 62,000 is suggested to be the native 'dense-vesicle' enzyme, having a Mr-5000 extension which serves to anchor this enzyme to the membrane and which is cleaved off during proteolytic solubilization; the Mr-200,000 band is an aggregate of the Mr-62,000 species, and the Mr-63,000 species is possibly a precursor. The purified 'clipped' enzyme hydrolysed cyclic AMP with kinetics indicative of apparent negative co-operativity, with a Hill coefficient (h) of 0.43 and limiting kinetic constants of Km1 = 0.3 +/- 0.05 microM, Km2 = 29 +/- 6 microM, Vmax.1 = 0.114 +/- 0.015 unit/mg of protein and Vmax.2 = 0.633 +/- 0.054 unit/mg of protein. It hydrolysed cyclic GMP with Michaelis kinetics, Km = 10 +/- 1 microM and Vmax. = 4.1 +/- 0.2 units/mg of protein. Cyclic GMP was a potent inhibitor of cyclic AMP hydrolysis, with an IC50 (concn. giving 50% inhibition) of 0.20 +/- 0.01 microM-cyclic GMP when assayed at 0.1 microM-cyclic AMP. This enzyme was inhibited potently by several drugs known to exert positive inotropic effects on the heart, was extremely thermolabile, with a half-life of 4.5 +/- 0.5 min at 40 degrees C, and was shown to be distinct from the rat liver insulin-stimulated peripheral-plasma-membrane cyclic AMP phosphodiesterase [Marchmont, Ayad & Houslay (1981) Biochem. J. 195, 645-652].

AB - The hormone-stimulated 'dense-vesicle' cyclic AMP phosphodiesterase was solubilized as a proteolytically 'clipped' species, and purified to apparent homogeneity from rat liver with a 2000-3000-fold purification and a 13-18% yield. It appeared to be a dimer (Mr 112,000), of two Mr-57,000 subunits. Solubilization of either a liver or a hepatocyte membrane fraction, with sodium cholate in the presence of the protein inhibitor benzamidine, identified three protein bands which could be immunoprecipitated by a polyclonal antibody raised against the pure enzyme. The major band at Mr 62,000 is suggested to be the native 'dense-vesicle' enzyme, having a Mr-5000 extension which serves to anchor this enzyme to the membrane and which is cleaved off during proteolytic solubilization; the Mr-200,000 band is an aggregate of the Mr-62,000 species, and the Mr-63,000 species is possibly a precursor. The purified 'clipped' enzyme hydrolysed cyclic AMP with kinetics indicative of apparent negative co-operativity, with a Hill coefficient (h) of 0.43 and limiting kinetic constants of Km1 = 0.3 +/- 0.05 microM, Km2 = 29 +/- 6 microM, Vmax.1 = 0.114 +/- 0.015 unit/mg of protein and Vmax.2 = 0.633 +/- 0.054 unit/mg of protein. It hydrolysed cyclic GMP with Michaelis kinetics, Km = 10 +/- 1 microM and Vmax. = 4.1 +/- 0.2 units/mg of protein. Cyclic GMP was a potent inhibitor of cyclic AMP hydrolysis, with an IC50 (concn. giving 50% inhibition) of 0.20 +/- 0.01 microM-cyclic GMP when assayed at 0.1 microM-cyclic AMP. This enzyme was inhibited potently by several drugs known to exert positive inotropic effects on the heart, was extremely thermolabile, with a half-life of 4.5 +/- 0.5 min at 40 degrees C, and was shown to be distinct from the rat liver insulin-stimulated peripheral-plasma-membrane cyclic AMP phosphodiesterase [Marchmont, Ayad & Houslay (1981) Biochem. J. 195, 645-652].

KW - 3',5'-cyclic-AMP phosphodiesterases

KW - animals

KW - chemical precipitation

KW - electrophoresis, polyacrylamide gel

KW - glucagon

KW - insulin

KW - kinetics

KW - liver

KW - peptide fragments

UR - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1147660/

M3 - Article

VL - 242

SP - 33

EP - 42

JO - Biochemical Journal

T2 - Biochemical Journal

JF - Biochemical Journal

SN - 0264-6021

IS - 1

ER -