TY - JOUR
T1 - The impact of N,N-dimethyldodecylamine N-oxide (DDAO) concentration on the crystallisation of sodium dodecyl sulfate (SDS) systems and the resulting changes to viscosity, crystal structure, shape and the kinetics of crystal growth
AU - Summerton, Emily
AU - Hollamby, Martin J.
AU - Zimbitas, Georgina
AU - Snow, Tim
AU - Smith, Andrew J.
AU - Sommertune, Jens
AU - Bettiol, Jeanluc
AU - Jones, Christopher
AU - Britton, Melanie M.
AU - Bakalis, Serafim
PY - 2018/5/19
Y1 - 2018/5/19
N2 - Hypothesis: At low temperatures stability issues arise in commercial detergent products when surfactant crystallisation occurs, a process which is not currently well-understood. An understanding of the phase transition can be obtained using a simple binary SDS (sodium dodecyl sulfate) + DDAO (N,N-dimethyldodecylamine N-oxide) aqueous system. It expected that the crystallisation temperature of an SDS system can be lowered with addition of DDAO, thus providing a route to improve detergent stability. Experiments: Detergent systems are typically comprised of anionic surfactants, non-ionic surfactants and water. This study explores the crystallisation of a three component system consisting of sodium dodecyl sulfate (SDS), N,N–dimethyldodecylamine N-oxide (DDAO), and water using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and confocal Raman microscopy. Findings: The presence of DDAO lowered the crystallisation temperature of a 20 wt. % SDS system. For all aqueous mixtures of SDS + DDAO at low temperatures, SDS hydrated crystals, SDS.1/2H2O or SDS.H2O, formed. SDS hydrates comprising of layers of SDS separated by water layers. DDAO tended to reside in the vicinity of these SDS crystals. In the absence of DDAO an additional intermediary hydrate structure, SDS.1/8H2O, formed whereas for mixed SDS + DDAO systems no such structure was detected during crystallisation.
AB - Hypothesis: At low temperatures stability issues arise in commercial detergent products when surfactant crystallisation occurs, a process which is not currently well-understood. An understanding of the phase transition can be obtained using a simple binary SDS (sodium dodecyl sulfate) + DDAO (N,N-dimethyldodecylamine N-oxide) aqueous system. It expected that the crystallisation temperature of an SDS system can be lowered with addition of DDAO, thus providing a route to improve detergent stability. Experiments: Detergent systems are typically comprised of anionic surfactants, non-ionic surfactants and water. This study explores the crystallisation of a three component system consisting of sodium dodecyl sulfate (SDS), N,N–dimethyldodecylamine N-oxide (DDAO), and water using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and confocal Raman microscopy. Findings: The presence of DDAO lowered the crystallisation temperature of a 20 wt. % SDS system. For all aqueous mixtures of SDS + DDAO at low temperatures, SDS hydrated crystals, SDS.1/2H2O or SDS.H2O, formed. SDS hydrates comprising of layers of SDS separated by water layers. DDAO tended to reside in the vicinity of these SDS crystals. In the absence of DDAO an additional intermediary hydrate structure, SDS.1/8H2O, formed whereas for mixed SDS + DDAO systems no such structure was detected during crystallisation.
KW - sodium dodecyl sulfate
KW - detergent stability
KW - X-ray scattering
KW - crystallization
KW - low temperature
KW - N,N-dimethyldodecylamine N-oxide
U2 - 10.1016/j.jcis.2018.05.058
DO - 10.1016/j.jcis.2018.05.058
M3 - Article
SN - 0021-9797
JO - Journal of Colloid and Interface Science
JF - Journal of Colloid and Interface Science
ER -