The gravitational coupling between longitudinal segments of a hollow cylinder and an arbitrary gravitational source: Relevance to the STEP experiment

N.A. Lockerbie, X. Xu, A.V. Veryaskin

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The gravitational interaction is derived between a solid longitudinal segment cut from a cylinder of uniform density, and an external point mass. The derivation is expressed p(2p+m+1)(m)(cos theta), and the parametric form of the coupling coefficients K-2p,K-m,K-alpha(psi) is presented. This theory is applied to the gravitational interaction between a point mass and a finite hollow cylinder, where the cylinder bears a number of 'flats' cut into its outer surface. The 'flats' are imagined to be regularly spaced in azimuth around the cylinder, each flat being treated as the removal of a solid segment from the full cylinder. Such forms of test mass have been proposed for the satellite test of the equivalence principle (STEP) experiment, since the masses may then be prevented from rotating in azimuth-a factor which is considered to be essential for this experiment. The gravitational theory developed here is applied to such STEP test masses, and two 'low gravitational susceptibility' designs for test-mass pairs are considered, having four and six 'flats', respectively. An expression for the axial force on such masses is derived which is more than 10(5) times faster to compute than a Monte Carlo integration of similar accuracy, by virtue of which it is shown that a design with six or more 'flats' is to be preferred. This theory is shown to have much wider applicability to gravitational problems involving general segmented cylindrical bodies, including square- and hexagonal-section prisms of finite length (hollow or solid).
Original languageEnglish
Pages (from-to)2041-2059
Number of pages18
JournalClassical and Quantum Gravity
Volume13
Issue number8
DOIs
Publication statusPublished - Aug 1996

Fingerprint

equivalence
hollow
azimuth
cylindrical bodies
coupling coefficients
bears
prisms
derivation
interactions
magnetic permeability

Keywords

  • cosmology
  • gravitation
  • longitudinal segments
  • STEP experiment

Cite this

@article{7c3918ecdb1f4019ac7ea9901597f178,
title = "The gravitational coupling between longitudinal segments of a hollow cylinder and an arbitrary gravitational source: Relevance to the STEP experiment",
abstract = "The gravitational interaction is derived between a solid longitudinal segment cut from a cylinder of uniform density, and an external point mass. The derivation is expressed p(2p+m+1)(m)(cos theta), and the parametric form of the coupling coefficients K-2p,K-m,K-alpha(psi) is presented. This theory is applied to the gravitational interaction between a point mass and a finite hollow cylinder, where the cylinder bears a number of 'flats' cut into its outer surface. The 'flats' are imagined to be regularly spaced in azimuth around the cylinder, each flat being treated as the removal of a solid segment from the full cylinder. Such forms of test mass have been proposed for the satellite test of the equivalence principle (STEP) experiment, since the masses may then be prevented from rotating in azimuth-a factor which is considered to be essential for this experiment. The gravitational theory developed here is applied to such STEP test masses, and two 'low gravitational susceptibility' designs for test-mass pairs are considered, having four and six 'flats', respectively. An expression for the axial force on such masses is derived which is more than 10(5) times faster to compute than a Monte Carlo integration of similar accuracy, by virtue of which it is shown that a design with six or more 'flats' is to be preferred. This theory is shown to have much wider applicability to gravitational problems involving general segmented cylindrical bodies, including square- and hexagonal-section prisms of finite length (hollow or solid).",
keywords = "cosmology, gravitation, longitudinal segments, STEP experiment",
author = "N.A. Lockerbie and X. Xu and A.V. Veryaskin",
year = "1996",
month = "8",
doi = "10.1088/0264-9381/13/8/004",
language = "English",
volume = "13",
pages = "2041--2059",
journal = "Classical and Quantum Gravity",
issn = "0264-9381",
number = "8",

}

TY - JOUR

T1 - The gravitational coupling between longitudinal segments of a hollow cylinder and an arbitrary gravitational source: Relevance to the STEP experiment

AU - Lockerbie, N.A.

AU - Xu, X.

AU - Veryaskin, A.V.

PY - 1996/8

Y1 - 1996/8

N2 - The gravitational interaction is derived between a solid longitudinal segment cut from a cylinder of uniform density, and an external point mass. The derivation is expressed p(2p+m+1)(m)(cos theta), and the parametric form of the coupling coefficients K-2p,K-m,K-alpha(psi) is presented. This theory is applied to the gravitational interaction between a point mass and a finite hollow cylinder, where the cylinder bears a number of 'flats' cut into its outer surface. The 'flats' are imagined to be regularly spaced in azimuth around the cylinder, each flat being treated as the removal of a solid segment from the full cylinder. Such forms of test mass have been proposed for the satellite test of the equivalence principle (STEP) experiment, since the masses may then be prevented from rotating in azimuth-a factor which is considered to be essential for this experiment. The gravitational theory developed here is applied to such STEP test masses, and two 'low gravitational susceptibility' designs for test-mass pairs are considered, having four and six 'flats', respectively. An expression for the axial force on such masses is derived which is more than 10(5) times faster to compute than a Monte Carlo integration of similar accuracy, by virtue of which it is shown that a design with six or more 'flats' is to be preferred. This theory is shown to have much wider applicability to gravitational problems involving general segmented cylindrical bodies, including square- and hexagonal-section prisms of finite length (hollow or solid).

AB - The gravitational interaction is derived between a solid longitudinal segment cut from a cylinder of uniform density, and an external point mass. The derivation is expressed p(2p+m+1)(m)(cos theta), and the parametric form of the coupling coefficients K-2p,K-m,K-alpha(psi) is presented. This theory is applied to the gravitational interaction between a point mass and a finite hollow cylinder, where the cylinder bears a number of 'flats' cut into its outer surface. The 'flats' are imagined to be regularly spaced in azimuth around the cylinder, each flat being treated as the removal of a solid segment from the full cylinder. Such forms of test mass have been proposed for the satellite test of the equivalence principle (STEP) experiment, since the masses may then be prevented from rotating in azimuth-a factor which is considered to be essential for this experiment. The gravitational theory developed here is applied to such STEP test masses, and two 'low gravitational susceptibility' designs for test-mass pairs are considered, having four and six 'flats', respectively. An expression for the axial force on such masses is derived which is more than 10(5) times faster to compute than a Monte Carlo integration of similar accuracy, by virtue of which it is shown that a design with six or more 'flats' is to be preferred. This theory is shown to have much wider applicability to gravitational problems involving general segmented cylindrical bodies, including square- and hexagonal-section prisms of finite length (hollow or solid).

KW - cosmology

KW - gravitation

KW - longitudinal segments

KW - STEP experiment

UR - http://dx.doi.org/10.1088/0264-9381/13/8/004

U2 - 10.1088/0264-9381/13/8/004

DO - 10.1088/0264-9381/13/8/004

M3 - Article

VL - 13

SP - 2041

EP - 2059

JO - Classical and Quantum Gravity

JF - Classical and Quantum Gravity

SN - 0264-9381

IS - 8

ER -