The gravitational coupling between longitudinal segments of a hollow cylinder and an arbitrary gravitational source: Relevance to the STEP experiment

N.A. Lockerbie, X. Xu, A.V. Veryaskin

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


The gravitational interaction is derived between a solid longitudinal segment cut from a cylinder of uniform density, and an external point mass. The derivation is expressed p(2p+m+1)(m)(cos theta), and the parametric form of the coupling coefficients K-2p,K-m,K-alpha(psi) is presented. This theory is applied to the gravitational interaction between a point mass and a finite hollow cylinder, where the cylinder bears a number of 'flats' cut into its outer surface. The 'flats' are imagined to be regularly spaced in azimuth around the cylinder, each flat being treated as the removal of a solid segment from the full cylinder. Such forms of test mass have been proposed for the satellite test of the equivalence principle (STEP) experiment, since the masses may then be prevented from rotating in azimuth-a factor which is considered to be essential for this experiment. The gravitational theory developed here is applied to such STEP test masses, and two 'low gravitational susceptibility' designs for test-mass pairs are considered, having four and six 'flats', respectively. An expression for the axial force on such masses is derived which is more than 10(5) times faster to compute than a Monte Carlo integration of similar accuracy, by virtue of which it is shown that a design with six or more 'flats' is to be preferred. This theory is shown to have much wider applicability to gravitational problems involving general segmented cylindrical bodies, including square- and hexagonal-section prisms of finite length (hollow or solid).
Original languageEnglish
Pages (from-to)2041-2059
Number of pages18
JournalClassical and Quantum Gravity
Issue number8
Publication statusPublished - Aug 1996


  • cosmology
  • gravitation
  • longitudinal segments
  • STEP experiment

Cite this