The effects of temperature on the performance of electrochemical double layer capacitors

S. I. Fletcher, F. B. Sillars, R. C. Carter, A. J. Cruden, M. Mirzaeian, N. E. Hudson, J. A. Parkinson, P. J. Hall, Peter Hall

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)


An electrochemical double layer capacitor test cell containing activated carbon xerogel electrodes and ionic liquid electrolyte was tested at 15, 25 and 40 degrees C to examine the effect of temperature on electrolyte resistance (R-S) and equivalent series resistance (ESR) measured using impedance spectroscopy and capacitance using charge/discharge cycling. A commercial 10 F capacitor was used as a comparison. Viscosity, ionic self-diffusion coefficients and differential scanning calorimetry measurements were used to provide an insight into the behaviour of the 1,2-dimethy1-3-propylimdazolium electrolyte. Both R-S and ESR decreased with increasing temperature for both capacitors. Increasing the temperature also increased the capacitance for both the test cell and the commercial capacitor but proportionally more for the test cell. An increase in temperature decreased the ionic liquid electrolyte viscosity and increased the self-diffusion coefficients of both the anion and the cation indicating an increase in dissociation and increase in ionic mobility. (C) 2010 Elsevier B.V. All rights reserved.

Original languageEnglish
Pages (from-to)7484-7488
Number of pages5
JournalJournal of Power Sources
Issue number21
Publication statusPublished - 1 Nov 2010


  • electrochemical double layer capacitor
  • Ionic liquid
  • temperature effects
  • ionic liquids
  • electrolytes


Dive into the research topics of 'The effects of temperature on the performance of electrochemical double layer capacitors'. Together they form a unique fingerprint.

Cite this