The dynamics of electron and ion holes in a collisionless plasma

B. Eliasson, P. K. Shukla

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly trapped in the electron hole, which widens further due to the relativistic mass increase and ponderomotive force in the oscillating electromagnetic field. The results of our simulations could be helpful to understand the nonlinear dynamics of electron and ion holes in space and laboratory plasmas.
Original languageEnglish
Pages (from-to)269-289
Number of pages21
JournalNonlinear Processes in Geophysics
Volume12
DOIs
Publication statusPublished - 11 Feb 2005

Keywords

  • plasma
  • electron holes
  • ion holes

Fingerprint Dive into the research topics of 'The dynamics of electron and ion holes in a collisionless plasma'. Together they form a unique fingerprint.

  • Cite this