The Columbia river plume as cross-shelf exporter and along-coast barrier

N. S. Banas, P. MacCready, B. M. Hickey

Research output: Contribution to journalArticlepeer-review

67 Citations (Scopus)

Abstract

An intensive Lagrangian particle-tracking analysis of the July 2004 upwelling period was conducted in a hindcast model of the US Pacific Northwest coast, in order to determine the effect of the Columbia River plume on the fate of upwelled water. The model, implemented using Regional Ocean Modeling System (ROMS), includes variable wind and atmospheric forcing, variable Columbia river flow, realistic boundary conditions from Navy Coastal Ocean Model (NCOM), and 10 tidal constituents. Model skill has been demonstrated in detail elsewhere [MacCready, P., Banas, N.S., Hickey, B.M., Dever, E.P., Liu, Y., 2008. A model study of tide- and wind-induced mixing in the Columbia River estuary and plume. Continental Shelf Research, this issue, doi:10.1016/j.csr.2008.03.015]. Particles were released in the Columbia estuary, along the Washington coastal wall, and along the model's northern boundary at 48°N. Particles were tracked in three dimensions, using both velocities from ROMS and a vertical random displacement representing turbulent mixing. When 25 h of upwelling flow is looped and particles tracked for 12 d, their trajectories highlight a field of transient eddies and recirculations on scales from 5 to 50 km both north and south of the Columbia. Not all of these features are caused by plume dynamics, but the presence of the plume increases the entrainment of inner-shelf water into them. The cumulative effect of the plume's interaction with these transient features is to increase cross-shelf dispersion: 25% more water is transported laterally past the 100 m isobath when river and estuarine effects are included than when they are omitted. This cross-shelf dispersion also disrupts the southward transport of water along the inner shelf that occurs in the model when the Columbia River is omitted. This second effect-increased retention of upwelled water on the Washington shelf-may be partly responsible for the regional-scale alongcoast gradient in chlorophyll biomass, although variations in shelf width, the Juan de Fuca Eddy to the north, and the intermittency of upwelling-favorable winds are likely also to play important roles.

Original languageEnglish
Pages (from-to)292-301
Number of pages10
JournalContinental Shelf Research
Volume29
Issue number1
DOIs
Publication statusPublished - 15 Jan 2009

Keywords

  • California current system
  • coastal upwelling
  • Columbia river
  • lagrangian methods
  • numerical modeling
  • Pacific northwest
  • river plumes

Cite this