TY - BOOK
T1 - The Callias Index Formula Revisited
AU - Gesztesy, Fritz
AU - Waurick, Marcus
PY - 2016/6/20
Y1 - 2016/6/20
N2 - These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970’s, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hörmander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
AB - These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970’s, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hörmander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
KW - Callias index formula
KW - Fredholm indices
KW - linear partial differential operators
UR - http://www.springer.com/gb/book/9783319299761
M3 - Book
SN - 9783319299778
T3 - Lecture Notes in Mathematics
BT - The Callias Index Formula Revisited
PB - Springer
CY - Switzerland
ER -