Tetrahydrobiopterin analogues with NO-dependent pulmonary vasodilator properties

S. P. Kunuthur, P. H. Milliken, Colin Gibson, C. J. Suckling, R. M. Wadsworth

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Reduced NO levels due to the deficiency of tetrahydrobiopterin (BH4) contribute to impaired vasodilation in pulmonary hypertension Due to the chemically unstable nature of BH4 it was hypothesised that oxidatively stable analogues of BR, would be able to support NO synthesis to improve Endothelial dysfunction in pulmonary hypertension Two analogues of BH4 namely 6-hydroxymethyl pterin (HMP) and 6-acetyl 7 7-dimethyl 7 8-dihydropterin (ADDP) were evaluated for vasodilator activity on precontracted rat pulmonary artery rings ADDP was administered to pulmonary hypertensive rats followed by measurement of pulmonary vascular resistance in perfused lungs and eNOS expression by immunohistochemistry ADDP and HMP caused significant relaxation in vitro in rat pulmonary arteries depleted of BH4 with a maximum relaxation at 0 3 mu M (both P<005) Vasodilator activity of ADDP and HMP was completely abolished following preincubation with the NO synthase inhibitor L-NAME ADDP and HMP did not alter relaxation induced by carbachol or spermine NONOate BH4 Itself did not produce relaxation In rats receiving ADDP 141 mg/kg/day pulmonary vasodilation induced by calcium ionophore A23187 was augmented and eNOS immunoreactivity was increased In conclusion ADDP and HMP are two analogues of BH4 which can act as oxidatively stable alternatives to BH4 in causing NO-mediated vasorelaxation Chronic treatment with ADDP resulted in Improvement of NO-mediated pulmonary artery dilation and enhanced expression of eNOS in the pulmonary vascular endothelium Chemically stable analogue, of BH4 may be able to limit endothelial dysfunction in the pulmonary vasculature
LanguageEnglish
Pages371-377
Number of pages7
JournalEuropean Journal of Pharmacology
Volume650
Issue number1
DOIs
Publication statusPublished - 10 Jan 2011

Fingerprint

Vasodilator Agents
Pterins
Lung
Vasodilation
Pulmonary Artery
Phenylketonurias
Pulmonary Hypertension
Calcium Ionophores
7,8-dihydropterin
sapropterin
NG-Nitroarginine Methyl Ester
Vascular Endothelium
Calcimycin
Carbachol
Nitric Oxide Synthase
Vascular Resistance
Dilatation
Immunohistochemistry

Keywords

  • Tetrahydrobiopterin
  • pulmonary artery
  • Nitric oxide
  • pulmonary hypertension
  • Nitric oxide synthase

Cite this

Kunuthur, S. P. ; Milliken, P. H. ; Gibson, Colin ; Suckling, C. J. ; Wadsworth, R. M. / Tetrahydrobiopterin analogues with NO-dependent pulmonary vasodilator properties. In: European Journal of Pharmacology. 2011 ; Vol. 650, No. 1. pp. 371-377.
@article{182d803d979849fb9ff6b4a742114146,
title = "Tetrahydrobiopterin analogues with NO-dependent pulmonary vasodilator properties",
abstract = "Reduced NO levels due to the deficiency of tetrahydrobiopterin (BH4) contribute to impaired vasodilation in pulmonary hypertension Due to the chemically unstable nature of BH4 it was hypothesised that oxidatively stable analogues of BR, would be able to support NO synthesis to improve Endothelial dysfunction in pulmonary hypertension Two analogues of BH4 namely 6-hydroxymethyl pterin (HMP) and 6-acetyl 7 7-dimethyl 7 8-dihydropterin (ADDP) were evaluated for vasodilator activity on precontracted rat pulmonary artery rings ADDP was administered to pulmonary hypertensive rats followed by measurement of pulmonary vascular resistance in perfused lungs and eNOS expression by immunohistochemistry ADDP and HMP caused significant relaxation in vitro in rat pulmonary arteries depleted of BH4 with a maximum relaxation at 0 3 mu M (both P<005) Vasodilator activity of ADDP and HMP was completely abolished following preincubation with the NO synthase inhibitor L-NAME ADDP and HMP did not alter relaxation induced by carbachol or spermine NONOate BH4 Itself did not produce relaxation In rats receiving ADDP 141 mg/kg/day pulmonary vasodilation induced by calcium ionophore A23187 was augmented and eNOS immunoreactivity was increased In conclusion ADDP and HMP are two analogues of BH4 which can act as oxidatively stable alternatives to BH4 in causing NO-mediated vasorelaxation Chronic treatment with ADDP resulted in Improvement of NO-mediated pulmonary artery dilation and enhanced expression of eNOS in the pulmonary vascular endothelium Chemically stable analogue, of BH4 may be able to limit endothelial dysfunction in the pulmonary vasculature",
keywords = "Tetrahydrobiopterin, pulmonary artery, Nitric oxide, pulmonary hypertension, Nitric oxide synthase",
author = "Kunuthur, {S. P.} and Milliken, {P. H.} and Colin Gibson and Suckling, {C. J.} and Wadsworth, {R. M.}",
year = "2011",
month = "1",
day = "10",
doi = "10.1016/j.ejphar.2010.09.070",
language = "English",
volume = "650",
pages = "371--377",
journal = "European Journal of Pharmacology",
issn = "0014-2999",
number = "1",

}

Tetrahydrobiopterin analogues with NO-dependent pulmonary vasodilator properties. / Kunuthur, S. P.; Milliken, P. H.; Gibson, Colin; Suckling, C. J.; Wadsworth, R. M.

In: European Journal of Pharmacology, Vol. 650, No. 1, 10.01.2011, p. 371-377.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Tetrahydrobiopterin analogues with NO-dependent pulmonary vasodilator properties

AU - Kunuthur, S. P.

AU - Milliken, P. H.

AU - Gibson, Colin

AU - Suckling, C. J.

AU - Wadsworth, R. M.

PY - 2011/1/10

Y1 - 2011/1/10

N2 - Reduced NO levels due to the deficiency of tetrahydrobiopterin (BH4) contribute to impaired vasodilation in pulmonary hypertension Due to the chemically unstable nature of BH4 it was hypothesised that oxidatively stable analogues of BR, would be able to support NO synthesis to improve Endothelial dysfunction in pulmonary hypertension Two analogues of BH4 namely 6-hydroxymethyl pterin (HMP) and 6-acetyl 7 7-dimethyl 7 8-dihydropterin (ADDP) were evaluated for vasodilator activity on precontracted rat pulmonary artery rings ADDP was administered to pulmonary hypertensive rats followed by measurement of pulmonary vascular resistance in perfused lungs and eNOS expression by immunohistochemistry ADDP and HMP caused significant relaxation in vitro in rat pulmonary arteries depleted of BH4 with a maximum relaxation at 0 3 mu M (both P<005) Vasodilator activity of ADDP and HMP was completely abolished following preincubation with the NO synthase inhibitor L-NAME ADDP and HMP did not alter relaxation induced by carbachol or spermine NONOate BH4 Itself did not produce relaxation In rats receiving ADDP 141 mg/kg/day pulmonary vasodilation induced by calcium ionophore A23187 was augmented and eNOS immunoreactivity was increased In conclusion ADDP and HMP are two analogues of BH4 which can act as oxidatively stable alternatives to BH4 in causing NO-mediated vasorelaxation Chronic treatment with ADDP resulted in Improvement of NO-mediated pulmonary artery dilation and enhanced expression of eNOS in the pulmonary vascular endothelium Chemically stable analogue, of BH4 may be able to limit endothelial dysfunction in the pulmonary vasculature

AB - Reduced NO levels due to the deficiency of tetrahydrobiopterin (BH4) contribute to impaired vasodilation in pulmonary hypertension Due to the chemically unstable nature of BH4 it was hypothesised that oxidatively stable analogues of BR, would be able to support NO synthesis to improve Endothelial dysfunction in pulmonary hypertension Two analogues of BH4 namely 6-hydroxymethyl pterin (HMP) and 6-acetyl 7 7-dimethyl 7 8-dihydropterin (ADDP) were evaluated for vasodilator activity on precontracted rat pulmonary artery rings ADDP was administered to pulmonary hypertensive rats followed by measurement of pulmonary vascular resistance in perfused lungs and eNOS expression by immunohistochemistry ADDP and HMP caused significant relaxation in vitro in rat pulmonary arteries depleted of BH4 with a maximum relaxation at 0 3 mu M (both P<005) Vasodilator activity of ADDP and HMP was completely abolished following preincubation with the NO synthase inhibitor L-NAME ADDP and HMP did not alter relaxation induced by carbachol or spermine NONOate BH4 Itself did not produce relaxation In rats receiving ADDP 141 mg/kg/day pulmonary vasodilation induced by calcium ionophore A23187 was augmented and eNOS immunoreactivity was increased In conclusion ADDP and HMP are two analogues of BH4 which can act as oxidatively stable alternatives to BH4 in causing NO-mediated vasorelaxation Chronic treatment with ADDP resulted in Improvement of NO-mediated pulmonary artery dilation and enhanced expression of eNOS in the pulmonary vascular endothelium Chemically stable analogue, of BH4 may be able to limit endothelial dysfunction in the pulmonary vasculature

KW - Tetrahydrobiopterin

KW - pulmonary artery

KW - Nitric oxide

KW - pulmonary hypertension

KW - Nitric oxide synthase

UR - http://www.scopus.com/inward/record.url?scp=78649735545&partnerID=8YFLogxK

U2 - 10.1016/j.ejphar.2010.09.070

DO - 10.1016/j.ejphar.2010.09.070

M3 - Article

VL - 650

SP - 371

EP - 377

JO - European Journal of Pharmacology

T2 - European Journal of Pharmacology

JF - European Journal of Pharmacology

SN - 0014-2999

IS - 1

ER -