Synthesis of Ni2+ ion doped ZnO-MWCNTs nanocomposites using an in situ sol-gel method: an ultra sensitive non-enzymatic uric acid sensing electrode material

Sajid B. Mullani, Anita K. Tawade, Shivaji N. Tayade, Kiran Kumar K. Sharma, Shamkumar P. Deshmukh, Navaj B. Mullani, Sawanta S. Mali, Chang Kook Hong, B.E. Kumara Swamy, Sagar D. Delekar*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)
1 Downloads (Pure)

Abstract

Nickel (Ni2+) ion doped zinc oxide-multi-wall carbon nanotubes (NZC) with different composition ratios of MWCNTs (from 0.01 to 0.1 wt%) are synthesized through anin situsol-gel method. The synthesized NZC nanocomposites (NCs) are used as electrode materials with glassy carbon electrodes (GCEs) for electrochemical detection of uric acid (UA). The cyclic voltammogram of the representative NZC 0.1 modified GCE (NZC 0.1/GCE) revealed the highest electrochemical sensing activity towards the oxidation of UA at 0.37 V in 0.2 M phosphate buffer solution (PBS) having pH 7.4 ± 0.02. The limit of detection (LOD) and limit of quantification (LOQ) for the NZC 0.1/GCE are determined to be 5.72 nM and 19.00 nM (S/N = 3) respectively, which is the lowest compared to the literature values reported for enzymatic and non-enzymatic detection techniques. The synergistic effect of NZC 0.1 NCs is proposed as one of the factors for the enhanced electrochemical oxidation of UA complemented by the phase, lattice parameters, functional groups, morphology, elemental compositions, types of bonding and specific surface area with pore size ascertained using various techniques. The synthesized NZC 0.1 NCs are further proposed as selective electrode materials for the electrochemical detection of UA as authenticated further by performing interference tests with other metabolites such as ascorbic acid (AA), dopamine (DA) andd-glucose. The optimized electrochemical studies are further adopted for sensing of UA from human excretion samples using NZC 0.1 NCs.

Original languageEnglish
Pages (from-to)36949-36961
Number of pages13
JournalRSC Advances
Volume10
Issue number61
DOIs
Publication statusPublished - 7 Oct 2020

Funding

Author SBM, gratefully acknowledge to University Grants Commission, New Delhi for financial support under Basic Scientific Research scheme (UGC No. F.25-1/2014-15(BSR)/7-183/2009(BSR)-5 Nov. 2015).

Keywords

  • MWCNTs
  • sol–gel
  • Ni2+ ion doped zinc oxide-multi-wall carbon nanotubes
  • electrode materials
  • uric acid

Fingerprint

Dive into the research topics of 'Synthesis of Ni2+ ion doped ZnO-MWCNTs nanocomposites using an in situ sol-gel method: an ultra sensitive non-enzymatic uric acid sensing electrode material'. Together they form a unique fingerprint.

Cite this