Abstract
The use of bismuth vanadate (BiVO4) scheelite structures for converting solar energy into fuels and chemicals for fast growth in lab to industrial scale for large-area modules is a key challenge for further development. Herein, we demonstrate a new ultrasonic spray technique as a scalable and versatile coating technique for coating pristine and doped nanoporous BiVO4 thin film photoanodes directly on FTO-coated glass substrates for water splitting under visible irradiation. The successful Mo doping in BiVO4 lattice was confirmed by various characterization techniques such as XRD, Raman, EDS and XPS. The Mo:BiVO4 photoelectrode showed excellent performance with higher stability as compared to pristine BiVO4 samples.
Original language | English |
---|---|
Pages (from-to) | 799-806 |
Number of pages | 8 |
Journal | Nanoscale Advances |
Volume | 1 |
Issue number | 2 |
Early online date | 7 Nov 2018 |
DOIs | |
Publication status | Published - 1 Feb 2019 |
Funding
This research was supported by the National Research Foundation of Korea (NRF) (NRF-2017R1A2B4008117). This work was also supported by the Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016H1D3A1909289) for an outstanding overseas young researcher. This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024334).
Keywords
- bismuth vanadate
- solar energy
- ultrasonic spray
- photoanodes