Synthesis of mono- and geminal dimetalated carbanions of bis(phenylsulfonyl) methane using alkali metal bases and structural comparisons with lithiated bis(phenylsulfonyl)imides

D J MacDougall, A R Kennedy, B C Noll, K W Henderson

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The alpha,alpha'-stabilized carbanion complexes [(PhSO2)(2)CHLi center dot THF] 1, [(PhSO2)(2)CHNa center dot THF] 2 and [(PhSO2)(2)CHK] 3 were prepared by the direct deprotonation of bis(phenylsulfonyl) methane I in THF with one molar equivalent of MeLi, BuNa and BnK respectively. The geminal dianionic complexes [(PhSO2)(2)CLi2 center dot THF] 4, [(PhSO2)(2)CNa2 center dot 0.55THF] 5 and [(PhSO2)(2)CK2] 6 were similarly prepared by the reaction of I with two molar equivalents of MeLi, BuNa and BnK respectively in THF. NMR and MS solution studies of 1 - 3 are consistent with the formation of charge-separated species in DMSO media. Solutions studies of 4 - 6, in conjunction with trapping experiments, indicate that the dianions deprotonate DMSO and regenerate the monoanions 1 - 3. Crystallographic analysis of 1 revealed a 1D chain polymer in which the metal centers are chelated by the bis( sulfonyl) ligands and connect to neighboring units through Li-O(S) interactions. An unexpected feature of 1 is that the polymeric chains are homochiral, since the chelating ligands of the backbone adopt the same relative configuration. Also, the phenyl substituents of each chelate in 1 are oriented in a cisoid manner. The sodium derivative 2 adopts a related solid-state structure, where enantiomeric pairs of chains combine to give a 1D ribbon motif. The lithium bis( phenylsulfonyl) imides [(PhSO2)(2)NLi center dot THF] 9 and [(PhSO2)(2)NLi center dot Pyr(2)] 10 were also prepared and structurally characterized. In the solid state 9 has a similar connectivity to that found for 1 but with heterochiral chains. In comparison, the more highly solvated complex 10 forms a 1D polymeric arrangement without chelation of the ligands and with the phenyl substituents oriented in a transoid fashion.

LanguageEnglish
Pages2084-2091
Number of pages8
JournalDalton Transactions
Issue number12
DOIs
Publication statusPublished - 2005

Fingerprint

Imides
Alkali Metals
Chelation
Ligands
Dimethyl Sulfoxide
Deprotonation
Lithium
Polymers
Metals
Sodium
Nuclear magnetic resonance
Derivatives
bis(phenylsulfonyl)methane
Experiments

Keywords

  • x-ray-structure
  • alpha-sulfonyl carbanions
  • solid-state structure
  • lithium-titanium exchange
  • c bond rotation
  • crystal structures
  • fluorocarbon acids
  • phosphane oxide

Cite this

@article{639e2d6101c4451d9bf70e7941cc0b8d,
title = "Synthesis of mono- and geminal dimetalated carbanions of bis(phenylsulfonyl) methane using alkali metal bases and structural comparisons with lithiated bis(phenylsulfonyl)imides",
abstract = "The alpha,alpha'-stabilized carbanion complexes [(PhSO2)(2)CHLi center dot THF] 1, [(PhSO2)(2)CHNa center dot THF] 2 and [(PhSO2)(2)CHK] 3 were prepared by the direct deprotonation of bis(phenylsulfonyl) methane I in THF with one molar equivalent of MeLi, BuNa and BnK respectively. The geminal dianionic complexes [(PhSO2)(2)CLi2 center dot THF] 4, [(PhSO2)(2)CNa2 center dot 0.55THF] 5 and [(PhSO2)(2)CK2] 6 were similarly prepared by the reaction of I with two molar equivalents of MeLi, BuNa and BnK respectively in THF. NMR and MS solution studies of 1 - 3 are consistent with the formation of charge-separated species in DMSO media. Solutions studies of 4 - 6, in conjunction with trapping experiments, indicate that the dianions deprotonate DMSO and regenerate the monoanions 1 - 3. Crystallographic analysis of 1 revealed a 1D chain polymer in which the metal centers are chelated by the bis( sulfonyl) ligands and connect to neighboring units through Li-O(S) interactions. An unexpected feature of 1 is that the polymeric chains are homochiral, since the chelating ligands of the backbone adopt the same relative configuration. Also, the phenyl substituents of each chelate in 1 are oriented in a cisoid manner. The sodium derivative 2 adopts a related solid-state structure, where enantiomeric pairs of chains combine to give a 1D ribbon motif. The lithium bis( phenylsulfonyl) imides [(PhSO2)(2)NLi center dot THF] 9 and [(PhSO2)(2)NLi center dot Pyr(2)] 10 were also prepared and structurally characterized. In the solid state 9 has a similar connectivity to that found for 1 but with heterochiral chains. In comparison, the more highly solvated complex 10 forms a 1D polymeric arrangement without chelation of the ligands and with the phenyl substituents oriented in a transoid fashion.",
keywords = "x-ray-structure, alpha-sulfonyl carbanions, solid-state structure, lithium-titanium exchange, c bond rotation, crystal structures, fluorocarbon acids, phosphane oxide",
author = "MacDougall, {D J} and Kennedy, {A R} and Noll, {B C} and Henderson, {K W}",
year = "2005",
doi = "10.1039/b504730g",
language = "English",
pages = "2084--2091",
journal = "Dalton Transactions",
issn = "1477-9226",
number = "12",

}

TY - JOUR

T1 - Synthesis of mono- and geminal dimetalated carbanions of bis(phenylsulfonyl) methane using alkali metal bases and structural comparisons with lithiated bis(phenylsulfonyl)imides

AU - MacDougall, D J

AU - Kennedy, A R

AU - Noll, B C

AU - Henderson, K W

PY - 2005

Y1 - 2005

N2 - The alpha,alpha'-stabilized carbanion complexes [(PhSO2)(2)CHLi center dot THF] 1, [(PhSO2)(2)CHNa center dot THF] 2 and [(PhSO2)(2)CHK] 3 were prepared by the direct deprotonation of bis(phenylsulfonyl) methane I in THF with one molar equivalent of MeLi, BuNa and BnK respectively. The geminal dianionic complexes [(PhSO2)(2)CLi2 center dot THF] 4, [(PhSO2)(2)CNa2 center dot 0.55THF] 5 and [(PhSO2)(2)CK2] 6 were similarly prepared by the reaction of I with two molar equivalents of MeLi, BuNa and BnK respectively in THF. NMR and MS solution studies of 1 - 3 are consistent with the formation of charge-separated species in DMSO media. Solutions studies of 4 - 6, in conjunction with trapping experiments, indicate that the dianions deprotonate DMSO and regenerate the monoanions 1 - 3. Crystallographic analysis of 1 revealed a 1D chain polymer in which the metal centers are chelated by the bis( sulfonyl) ligands and connect to neighboring units through Li-O(S) interactions. An unexpected feature of 1 is that the polymeric chains are homochiral, since the chelating ligands of the backbone adopt the same relative configuration. Also, the phenyl substituents of each chelate in 1 are oriented in a cisoid manner. The sodium derivative 2 adopts a related solid-state structure, where enantiomeric pairs of chains combine to give a 1D ribbon motif. The lithium bis( phenylsulfonyl) imides [(PhSO2)(2)NLi center dot THF] 9 and [(PhSO2)(2)NLi center dot Pyr(2)] 10 were also prepared and structurally characterized. In the solid state 9 has a similar connectivity to that found for 1 but with heterochiral chains. In comparison, the more highly solvated complex 10 forms a 1D polymeric arrangement without chelation of the ligands and with the phenyl substituents oriented in a transoid fashion.

AB - The alpha,alpha'-stabilized carbanion complexes [(PhSO2)(2)CHLi center dot THF] 1, [(PhSO2)(2)CHNa center dot THF] 2 and [(PhSO2)(2)CHK] 3 were prepared by the direct deprotonation of bis(phenylsulfonyl) methane I in THF with one molar equivalent of MeLi, BuNa and BnK respectively. The geminal dianionic complexes [(PhSO2)(2)CLi2 center dot THF] 4, [(PhSO2)(2)CNa2 center dot 0.55THF] 5 and [(PhSO2)(2)CK2] 6 were similarly prepared by the reaction of I with two molar equivalents of MeLi, BuNa and BnK respectively in THF. NMR and MS solution studies of 1 - 3 are consistent with the formation of charge-separated species in DMSO media. Solutions studies of 4 - 6, in conjunction with trapping experiments, indicate that the dianions deprotonate DMSO and regenerate the monoanions 1 - 3. Crystallographic analysis of 1 revealed a 1D chain polymer in which the metal centers are chelated by the bis( sulfonyl) ligands and connect to neighboring units through Li-O(S) interactions. An unexpected feature of 1 is that the polymeric chains are homochiral, since the chelating ligands of the backbone adopt the same relative configuration. Also, the phenyl substituents of each chelate in 1 are oriented in a cisoid manner. The sodium derivative 2 adopts a related solid-state structure, where enantiomeric pairs of chains combine to give a 1D ribbon motif. The lithium bis( phenylsulfonyl) imides [(PhSO2)(2)NLi center dot THF] 9 and [(PhSO2)(2)NLi center dot Pyr(2)] 10 were also prepared and structurally characterized. In the solid state 9 has a similar connectivity to that found for 1 but with heterochiral chains. In comparison, the more highly solvated complex 10 forms a 1D polymeric arrangement without chelation of the ligands and with the phenyl substituents oriented in a transoid fashion.

KW - x-ray-structure

KW - alpha-sulfonyl carbanions

KW - solid-state structure

KW - lithium-titanium exchange

KW - c bond rotation

KW - crystal structures

KW - fluorocarbon acids

KW - phosphane oxide

U2 - 10.1039/b504730g

DO - 10.1039/b504730g

M3 - Article

SP - 2084

EP - 2091

JO - Dalton Transactions

T2 - Dalton Transactions

JF - Dalton Transactions

SN - 1477-9226

IS - 12

ER -