TY - JOUR
T1 - Synthesis of aromatase inhibitors and dual aromatase-sulfatase inhibitors by linking an arylsulfamate motif to 4-(4H-1,2,4-triazol-4-ylamino)benzonitrile: SAR, crystal structures, in vitro and in vivo activities
AU - Bubert, C.
AU - Woo, L.W.L.
AU - Sutcliffe, O.B.
AU - Mahon, M.F.
AU - Chander, S.K.
AU - Purohit, A.
AU - Reed, M.J.
AU - Potter, B.V.L.
PY - 2008/9
Y1 - 2008/9
N2 - 4-(((4-Cyanophenyl)(4H-1,2,4-triazol-4-yl)amino)methyl)phenyl sulfamate (6 a) was the first dual aromatase-sulfatase inhibitor (DASI) reported. Several series of its derivatives with various linker systems between the steroid sulfatase (STS) and the aromatase inhibitory pharmacophores were synthesised and evaluated in JEG-3 cells. The X-ray crystal structures of the aromatase inhibitors, DASI precursors 42 d and 60, and DASI 43 h were determined. Nearly all derivatives show improved in vitro aromatase inhibition over 6 a but decreased STS inhibition. The best aromatase inhibitor is 42 e (IC50=0.26 nM) and the best DASI is 43 e (IC50 aromatase=0.45 nM, IC50 STS=1200 nM). SAR for aromatase inhibition shows that compounds containing an alkylene- and thioether-based linker system are more potent than those that are ether-, sulfone-, or sulfonamide-based, and that the length of the linker has a limited effect on aromatase inhibition beyond two methylene units. Compounds 43 d-f were studied in vivo (10 mg kg-1, single, p.o.). The most potent DASI is 43 e, which inhibited PMSG-induced plasma estradiol levels by 92 % and liver STS activity by 98 % 3 h after dosing. These results further strengthen the concept of designing and developing DASIs for potential treatment of hormone-related cancers.
AB - 4-(((4-Cyanophenyl)(4H-1,2,4-triazol-4-yl)amino)methyl)phenyl sulfamate (6 a) was the first dual aromatase-sulfatase inhibitor (DASI) reported. Several series of its derivatives with various linker systems between the steroid sulfatase (STS) and the aromatase inhibitory pharmacophores were synthesised and evaluated in JEG-3 cells. The X-ray crystal structures of the aromatase inhibitors, DASI precursors 42 d and 60, and DASI 43 h were determined. Nearly all derivatives show improved in vitro aromatase inhibition over 6 a but decreased STS inhibition. The best aromatase inhibitor is 42 e (IC50=0.26 nM) and the best DASI is 43 e (IC50 aromatase=0.45 nM, IC50 STS=1200 nM). SAR for aromatase inhibition shows that compounds containing an alkylene- and thioether-based linker system are more potent than those that are ether-, sulfone-, or sulfonamide-based, and that the length of the linker has a limited effect on aromatase inhibition beyond two methylene units. Compounds 43 d-f were studied in vivo (10 mg kg-1, single, p.o.). The most potent DASI is 43 e, which inhibited PMSG-induced plasma estradiol levels by 92 % and liver STS activity by 98 % 3 h after dosing. These results further strengthen the concept of designing and developing DASIs for potential treatment of hormone-related cancers.
KW - aromatase inhibitors
KW - breast cancer
KW - dual aromatase-sulfatase inhibitors
KW - endocrine therapy
KW - sulfatase inhibitors
KW - pharmacology
UR - http://dx.doi.org/10.1002/cmdc.200800164
U2 - 10.1002/cmdc.200800164
DO - 10.1002/cmdc.200800164
M3 - Article
SN - 1860-7179
VL - 3
SP - 1708
EP - 1730
JO - ChemMedChem
JF - ChemMedChem
IS - 11
ER -